Skip to main content
Log in

On Detection Improvement in MC-CDMA Image Watermarking on Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Code division multiple access (CDMA) at its multicarrier version of image watermarking scheme that is robust against random gain operation as well as enables high embedding rate is developed in this paper. Watermark embedding is done on mutually orthogonal set of host image samples wherein data bits are embedded using an orthogonal set of code patterns. Watermark decoding is also proposed by exploiting the principle of minimum mean square error combining. The decision variable for the binary watermark is the resultant weighted decision statistics. A generalized model of attack that consists of multiplicative and additive degradation on the watermarked image is considered. The first one follows Rayleigh distribution and the second one Gaussian distribution. We mathematically show that the proposed decoder structure incorporates the effect of random gain (fading attack) unlike the widely used correlator decoder. The concept of multiuser detection principle which is widely used in CDMA is then explored to cancel the effect of multiple bit interference in watermarking. Two variants of combined interference cancellation (CIC), namely threshold combined interference cancellation (TCIC) and group combined interference cancellation (GCIC) are then developed. Mathematical analysis and the results through simulations show that TCIC and CIC offer similar decoding error rate performance. On the other hand, a significant improvement in decoding error performance and payload are achieved through GCIC. Finally, the proposed method is studied for image error concealment and performance comparison is reported over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cox, I. J., Kilian, J., Leighton, F. T., & Shamoon, T. (1996). Secure spread spectrum watermarking for multimedia. IEEE Transaction on Image Processing, 6(12), 1673–1687.

    Article  Google Scholar 

  2. Maity, S. P., Maity, S., Sil, J., & Delpha, C. (2013). Optimized spread spectrum watermarking for fading-like attack with improvd Detection. Special Issue on Wireless Personal Communications, 72(3), 1737–1753.

    Article  Google Scholar 

  3. Bose, A., & Maity, S. P. (2017). Spread spectrum watermark detection on degraded compressed sensing. IEEE Sensor Letters, 1(5), 1–4.

    Article  Google Scholar 

  4. Maity, S. P., Maity, S., Sil, J., & Delpha, C. (2014). Perceptually adaptive MC-SS image watermarking using GA-NN Hybridization in fading gain. Special Issue on Engineering Applications of Artificial Intelligence, 31, 3–14.

    Article  Google Scholar 

  5. Maity, S. P., Kundu, M. K., & Das, T. S. (2007). Robust SS watermarking with improved capacity. Pattern Recognition Letters, 28, 350–356.

    Article  Google Scholar 

  6. Kundur, D., & Hatzinakos, D. (2001). Diversity and attacks characterization for improved robust watermarking. IEEE Transactions on Signal Processing, 29, 2383–2396.

    Article  Google Scholar 

  7. Maity, S. P., Maity, S., & Sil, J. (2009). Diversity assisted GCIC for spread spectrum watermark detection using genetic algorithms. In Proceedings of IEEE conference on image processing, Cairo, Egypt (pp. 3649–365).

  8. Kumar, S. K., & Sreenivas, T. (2007). Increased watermark-to-host correlation of uniform random phase watermarks in audio signals. Signal Processing, 87, 61–67.

    Article  MATH  Google Scholar 

  9. Kim, H. (2000). Stochastic model based audio watermark and whitening filter for improved detection. In Proceedings of IEEE international conference on acoustics, speech and signal processing (pp. 1971–1974).

  10. Seok, J. W., & Hong, J. W. (2001). Audio watermarking for copyright of digital audio data. IEEE Electronic Letters, 37, 60–61.

    Article  Google Scholar 

  11. Cvejic, N., & Seppanen, T. (2002). Audio prewhitening based on polynomial filtering for optimal watermark detection. In Proceedings of European signal processing conference.

  12. Haitsma, J. A., van der Veen, M., Kalker, T., & Bruekers, F. (2000). Audio watermarking for monitoring and copy protection. In Proceedings of the ACM multimedia workshop (pp. 119–122).

  13. Kirovski, D., & Malvar, H. S. (2003). Spread spectrum watermarking of audio signals. IEEE Transactions on Signal Processing, 51(4), 1020–1033.

    Article  MathSciNet  MATH  Google Scholar 

  14. Moulin, P., & Koetter, R. (2005). Data-hiding codes. Proceedings of IEEE, 93(12), 2083–2126.

    Article  Google Scholar 

  15. Cha, B.-H., & Kuo, C.-C. J. (2009). Robust MC-CDMA-based fingerprinting against time-varying collusion attacks. IEEE Transaction on Information Forensics and Security, 4(3), 302–317.

    Article  Google Scholar 

  16. Kumsawat, P., Attakitmongcol, K., & Srikaew, A. (2005). A new approach for optimization in image watermarking by using genetic algorithms. IEEE Transactions on Image Processing, 53, 4707–4719.

    Article  MathSciNet  MATH  Google Scholar 

  17. Malver, H., & Florencio, A. F. (2003). Improved spread spectrum: A new modulation technique for robust watermarking. IEEE Transactions on Image Processing, 51, 898–905.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kutter, M. (1999). Performance improvement of spread spectrum based image watermarking schemes through M-ary modulation. In Proceedings of the workshop on information hiding, LNCS-1768 (pp. 238–250). New York: Springer.

  19. Maity, S. P., Kundu, M. K., & Mandal, M. (2006). Performance improvement in spread spectrum watermarking via M-band wavelets and N-ary modulation. In Proceedings of IET international conference on visual information engineering, Bangalore, India (pp. 35–40).

  20. Maity, S. P., Mait, S., & Sil, J. (2012). Multicarrier spread spctrum watermarking for secure error concealment in fading channel. Telecommunication Systems, 49, 239–254.

    Article  Google Scholar 

  21. Bhattacharjee, T., & Maity, S. P. (2017). An image-in-image communication scheme using secretsharing and M-ary spread spectrum watermarking. Microsystem Technologies, 23(9), 4263–4276.

    Article  Google Scholar 

  22. Maity, S. P., & Maity, S. (2009). Multistage spread spectrum watermark detection technique using fuzzy logic. IEEE Signal Processing Letters, 16(4), 245–248.

    Article  Google Scholar 

  23. Faragallah, O. S. (2016). Transmission of DWT block-based KLT watermarked images through MC-CDMA wireless channel. Wireless Personal Communications, 90(3), 1387–1404.

    Article  MathSciNet  Google Scholar 

  24. Prasad, R. (1996). CDMA for wireless personal communications. Boston: Artech House.

    Google Scholar 

  25. Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. IEEE Communications Magazine, 35(12), 126–133.

    Article  Google Scholar 

  26. Maity, S. P., & Hati, S. (2015). On optimization of CI/MC-CDMA system through channelestimation. Wireless Personal Communicaion Journal, 85(4), 2333–2354.

    Article  Google Scholar 

  27. Phadikar, A., & Maity, S. P. (2012). Image concealment and quality access control based on data hiding and cryptography. Springer Telecommunication Journal, 49, 236–254.

    Google Scholar 

  28. Chen, B. N., & Lin, Y. (2006). Hybrid error concealment using linear interpolation. In Proceedings of international symposium on communications and information technologies (pp. 926–931).

  29. Ma, M., Au, O. C., Chan, S. H. G., & Sun, M. T. (2009). Edge-directed error concealment. IEEE Transaction on Circuits and Systems for Video Technology, 20, 382–395.

    Google Scholar 

  30. Wu, J., Liu, X., & Yoo, K. Y. (2008). A temporal error concealment method for H.264/AVC using motion vector recovery. IEEE Transactions on Consumer Electronics, 54(4), 1880–1885. https://doi.org/10.1109/TCE.2008.4711249.

    Google Scholar 

  31. Lee, P. J., Chen, H. H., & Chen, L. G. (2004). A new error concealment algorithm for H.264/AVC video transmission. In Proceedings of international symposium on intelligent multimedia, video, and speech processing (pp. 619–622).

  32. Liu, Y., & Li, Y. (2000). Error concealment for digital images using data hiding. In Proceedings of the ninth DSP workshop (pp. 1–6).

  33. Gur, G., Alagoz, F., & AbdelHafez, M. (2005). A novel error concealment method for images using watermarking in error-prone channels. In Proceedings of 16th IEEE international symposium on personal, indoor and mobile radio communications (pp. 2637–2641).

  34. Koloda, J., Ostrergaard, J., Jensen, S. H., Sanchz, V., & Peinado, A. M. (2013). Squential error concealment for video/image by sparse linar prediction. IEEE Transactions on Multimedia, 14(4), 957–969.

    Article  Google Scholar 

  35. Xu, D., Wang, R., & Shi, Y. Q. (2014). An improved reversible data hiding based approach for interframe error concealment in H. 264/AVC. Journal of Visual Communication and Image Representation, 25(2), 410–422.

    Article  Google Scholar 

  36. Anhari, A. K., Sodagari, S., & Avanaki, A. N. (2008). Hybrid error concealment in image communication using data hiding and spatial redundancy. In Proceedings of international conference on telecommunications (pp. 1–5).

  37. Wang, H., Tsaftaris, S. A., & Katsaggelos, A. K. (2006). Joint source-channel coding for wireless object-based video communications utilizing data hiding. IEEE Transactions on Image Processing, 15, 215–2169.

    Article  Google Scholar 

  38. Maity, S. P., & Maity, S. (2015). On dtection improvement in MC-CDMA image watermarking on fading channel. In 18th International symposium on wireless personal multimedia communication, 13–16 Decembr , Hyderabad, India.

  39. Thippavajjula, V., & Natarajan, B. (2004). Parallel interference cancelation techniques for synchronous carrier interferometry/MC-CDMA uplink. In IEEE vehicular technology conference (pp. 399–403).

  40. Wong, P. W. (1993). Inverse halftoning and kernel estimation for error diffusion. Media Technology Laboratory (pp. 1–23).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi P. Maity.

Appendix A

Appendix A

The minimum mean square error combining method estimates the j-th embedded watermark bit by the linear sum

$$ D^{j}=\sum _{n=1}^{N}w_{n}^{j}r_{n}^{j} $$
(15)

where \(w_{n}\) is the weight factor for MMSEC. The working principle of MMSEC dictates that the estimation error for watermark bit decoding must be orthogonal to all the components of the received marked data. Mathematically can be written as

$$ E\biggl \lbrace (b_{n}^{j}-\sum _{n=1}^{N}w_{n}^{j}r_{n}^{j}) .r_{n}^{j}\biggr \rbrace =0 $$
(16)

when \(n=1,2 \ldots N\).

The weight factor \(w_{n}^{j}\) can be found from the solution to (16) by applying Wiener filter theory [40] and may be written as

$$ w_{n}^{j}=C^{-1}A $$
(17)

where \(C=E\bigl \lbrace r_{n}^{j}r_{n}^{j}\mid \alpha _{n}\bigr \rbrace \) and \(A=E\bigl \lbrace b_{n}^{j}r_{n}^{j}\mid \alpha _{n}\bigr \rbrace \). The symbol \(E\bigl \lbrace .\bigr \rbrace \) denotes the expected value. This operation, when applied to the \(r_{n}^{j}\) yields

$$ C=\alpha _{n}^{2}\gamma ^{2}\sum _{j=1}^{k}var{(b_k)}\rho _{kj}^{2}+N_{0}/2 $$
(18)

and

$$ A=\alpha _{n} $$
(19)

The weight factors for MMSEC watermark decoding can be found by substituting (18) and (19) in (17)

$$ w_{nj}={\alpha _{n}\over \left( \alpha _{n}^{2}\gamma ^{2}\sum _{j=1}^{K}var(b_{k})\rho _{kj}^{2}+N_{0}/2\right) } $$
(20)

and from (15)

$$ D^{j}=\sum _{n=1}^{N} {\alpha _{n}\over {\alpha }^{2}_{n}\gamma ^{2}\sum _{j=1}^{K}\left( var(b_k){\rho }^{2}_{(kj)}+N_{0}/2\right) } r_{n}^{j} $$
(21)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S.P., Maity, S. On Detection Improvement in MC-CDMA Image Watermarking on Fading Channel. Wireless Pers Commun 100, 587–609 (2018). https://doi.org/10.1007/s11277-017-5222-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5222-z

Keywords

Navigation