Skip to main content
Log in

Novel Fault-Tolerant Decompression Method of Corrupted LZSS Files

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Data compression and decompression have been widely applied in modern communication and data transmission fields. But how to decompress corrupted lossless compressed files is still a challenge. This paper presents an effective method to decompress corrupted LZSS files. It is achieved by utilizing source prior information and heuristic method. In this paper, we propose to use compression coding rules and grammar rules as the source prior information. Based on the prior information, we establish a mathematical model to detect error bits and estimate the rough range of the error bits. As for error correction, a heuristic method is developed to determine the accurate positions of error bits and correct the errors. The experimental results demonstrate that the proposed FTD method can achieve a correction rate of 96.45% for corrupted LZSS files when successfully decompressed. More importantly, the proposed method is a general model that can be applied to decompress various types of lossless compressed files of which the original files are natural language texts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, S.-L., Liu, T.-Y., Shen, C.-W., & Tuan, M.-C. (2016). VLSI implementation of a cost-efficient near-lossless CFA image compressor for wireless capsule endoscopy. IEEE Access, 4, 10235–10245.

    Article  Google Scholar 

  2. Jiang, F., Ji, X.-D., Hu, C.-J., Liu, S.-H., & Zhao, D.-B. (2014). Compressed vision information restoration based on cloud prior and local prior. IEEE Access, 2, 1117–1127.

    Article  Google Scholar 

  3. Shanmugasundaram, S., & Lourdusamy, R. (2011). A comparative study of text compression algorithms. International Journal of Wisdom Based Computing, 3, 68–76.

    Google Scholar 

  4. Kuruppu, S., Beresford-Smith, B., Conway, T., & Zobel, J. (2012). Iterative dictionary construction for compression of large DNA data sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1), 137–149.

    Article  Google Scholar 

  5. Crystal, D. (2011). Dictionary of linguistics and phonetics (pp. 406–407). Hoboken: Wiley.

    Google Scholar 

  6. Barbieri, M. (2008). The codes of life (pp. 379–392). Hoboken: Wiley.

    Book  Google Scholar 

  7. Hilbert, M., & Lopez, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 60–65.

    Article  Google Scholar 

  8. Menghwar, G. D. & Mecklenbrauker, C. F. (2009). Cooperative versus noncooperative communications. In International conference on computer, control and communication (pp. 1–3).

  9. Ma, G. -F., Wang, Z. -X., & Cheng, Y. -S. (2015). Recovery of evidence and the judicial identification of electronic data based on ExFAT. In Proceedings of the 7th IEEE international conference cyber-enabled distributed computing and knowledge discovery (CyberC) (pp. 66–71).

  10. Das, S., Bull, D. M., & Whatmough, P. N. (2015). Error-resilient design techniques for reliable and dependable computing. IEEE Transactions on Device and Materials Reliability, 15(1), 24–34.

    Article  Google Scholar 

  11. Murin, Y., Dabora, R., & Gunduz, D. (2014). On joint source-channel coding for correlated sources over multiple-access relay channels. IEEE Transactions on Information Theory, 60(10), 6231–6253.

    Article  MathSciNet  MATH  Google Scholar 

  12. Stone, J. V. (2015). Information Theory: A Tutorial Introduction (pp. 61–71). England: Sebtel Press.

    Google Scholar 

  13. MacKay, D. J. (2003). Information theory, inference and learning algorithms (pp. 32–33). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  14. Sayood, K. (2012). Introduction to data compression (pp. 5–6). Central Tablelands: Newnes.

    MATH  Google Scholar 

  15. Huang, W. -J., & McCluskey, E. J. (2000). Transient errors and rollback recovery in LZ compression. In Proceedings of the IEEE Pacific rim international symposium dependable computing (pp. 128–135).

  16. Kostina, V., Polyanskiy, Y., & Verd, S. (2017). Joint source-channel coding with feedback. IEEE Transactions on Information Theory, 63(6), 3502–3515.

    Article  MathSciNet  Google Scholar 

  17. Zhou, R.-S., & Li, S.-H. (2005). Study on recovery of zip archive data. Computer Developement Applications, 18(10), 2–3.

    Google Scholar 

  18. Park, B., Savoldi, A., Gubin, P., et al. (2005) Recovery of damaged compressed files for digital forensic purposes. In Proceedings of the IEEE international conference multimedia ubiquitous engineering (MUE) (pp. 365–372).

  19. Kitakami, M., & Kawasaki, T. (2009). Burst error recovery method for LZSS coding. IEICE Transactions on Information and Systems, 92(12), 2439–2444.

    Article  Google Scholar 

  20. Pereira, Z. C., Pellenz, M. E., Souza, R. D., & Siqueira, M. A. (2007). Unequal error protection for LZSS compressed data using Reed-Solomon codes. IET Communications, 1(4), 612–617.

    Article  Google Scholar 

  21. Moffat, A., & Turpin, A. (2002). Compression and coding algorithms. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  22. Huffman, W. C., & Pless, V. (2003). Fundamentals of error-correcting codes. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  23. Kwon, B., Gong, M., & Lee, S. (2017). Novel error detection algorithm for LZSS compressed data. IEEE Access, 5, 2169–3536.

    Google Scholar 

  24. Chen, Y.-X., et al. (2010). Novel error resilient decoding algorithm for LZW based residual source redundancy. Journal of Wuhan University of Technology, 32(10), 159–163.

    Google Scholar 

  25. Storer, J. A., & Szymanski, T. G. (1982). Data compression via textual substitution. Journal of the ACM, 29(4), 928–951.

    Article  MathSciNet  MATH  Google Scholar 

  26. Manning, C. D., Raghavan, P., & Schutze, H. (2009). Introduction to Information Retrieval (pp. 237–252). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  27. Kundeti, V. & Rajasekaran, S. (2008). Extending the four Russian algorithm to compute the edit script in linear space. In Proceedings of the international conference computational science (ICCS) (pp. 893–902).

  28. Li, Y.-J., & Liu, B. (2007). A normalized Levenshtein distance metric. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1091–1095.

    Article  Google Scholar 

  29. Yang, A., Han, Y., Pan, Y., et al. (2017). Optimum surface roughness prediction for titanium alloy by adopting response surface methodology. Results in Physics, 7, 1046–1050.

    Article  Google Scholar 

  30. Li, J., Huang, L., Zhou, Y., et al. (2017). Computation partitioning for mobile cloud computing in a big data environment. IEEE Transactions on Industrial Informatics, 13(4), 2009–2018.

    Article  Google Scholar 

  31. Li, J., Yu, F. R., Deng, G., et al. (2017). Industrial internet: A survey on the enabling technologies, applications, and challenges. IEEE Communications Surveys & Tutorials, 19(3), 1504–1526.

    Article  Google Scholar 

  32. Li, J., Deng, G., Luo, C., et al. (2016). A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Transactions on Vehicular Technology, 65(12), 9585–9596.

    Article  Google Scholar 

  33. Li, J. Q., Li, W. L., Deng, G. Q., et al. (2016). Continuous-behavior and discrete-time combined control for linear induction motor-based urban rail transit. IEEE Transactions on Magnetics, 52(7), 1–4.

    Google Scholar 

  34. Cui, K., Yang, W., & Gou, H. (2017). Experimental research and finite element analysis on the dynamic characteristics of concrete steel bridges with multi-cracks. Journal of Vibroengineering, 19(6), 4198–4209.

    Article  Google Scholar 

  35. Wei, W., Fan, X., Song, H., et al. (2016). Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing. IEEE Transactions on Services Computing, 99, 1–13.

    Google Scholar 

  36. Cui, K., & Zhao, T. T. (2017). Unsaturated dynamic constitutive model under cyclic loading. Cluster Computing, 20(4), 2869–2879.

    Article  MathSciNet  Google Scholar 

  37. Wei, W., Song, H., Li, W., et al. (2017). Gradient-driven parking navigation using a continuous information potential field based on wireless sensor network. Information Sciences, 408, 100–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingquan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhao, X. & Sun, Q. Novel Fault-Tolerant Decompression Method of Corrupted LZSS Files. Wireless Pers Commun 102, 2499–2518 (2018). https://doi.org/10.1007/s11277-018-5268-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5268-6

Keywords

Navigation