Skip to main content
Log in

Bivariate Spline Finite Element Solver for Linear Hyperbolic Equations in Two-Dimensional Spaces

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a finite element method using bivariate spline on domains is proposed for solving linear hyperbolic equations in two-dimensional spaces. Bivariate spline space \(S_{4}^{2,3} (\Delta_{mn}^{(2)} )\) is constructed. It not only satisfies homogeneous boundary constraints but also satisfies interpolating boundary conditions on type-2 triangulations. Two examples are shown to confirm the correctness of theoretical conclusions. This means that spline method is efficient and feasible to solve 2D linear hyperbolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biazar, J. (2010). Analytic solution for telegraph equation by differential transform. Physics Letters A, 374, 2904–2906.

    Article  MathSciNet  MATH  Google Scholar 

  2. Yıldırım, A. (2010). He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics, 87, 2998–3006.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with stochastic process or random field coefficients. Applied Numerical Mathematic, 121, 38–51.

    Article  MathSciNet  MATH  Google Scholar 

  4. Karaa, S., & Pani, A. K. (2017). A posteriori error estimates for mixed finite element Galerkin approximations to second order linear hyperbolic equations. International Journal of Numerical Analysis and Modeling., 14(4–5), 571–590.

    MathSciNet  MATH  Google Scholar 

  5. Abd-Elhameed, W. M., Doha, E. H., Youssri, Y. H., & Bassuony, M. A. (2016). New Tchebyshev–Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations. Numerical Methods Partial Differential Equations, 32(6), 1553–1571.

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Z., Jieqing, T., Xianyu, G., & Guo, Z. (2018). Generalized B-splines’ geometric iterative fitting method with mutually different weights. Journal of Computational and Applied Mathematics, 329, 331–343.

    Article  MathSciNet  MATH  Google Scholar 

  7. Christopher, P. (2017). B-splines collocation for plate bending eigenanalysis. Journal of Mechanics of Materials and Structures, 12(4), 353–371.

    Article  MathSciNet  Google Scholar 

  8. Alaattin, E., & Orkun, T. (2017). Numerical solution of time fractional Schrödinger equation by using quadratic B-spline finite elements. Annales Mathematicae Silesianae, 31(1), 83–98.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jalil, R., & Sanaz, J. (2017). Collocation method based on modified cubic B-spline for option pricing models. Mathematical Communications, 22(1), 89–102.

    MathSciNet  MATH  Google Scholar 

  10. Kai, Q., Wang, Z., & Jiang, B. (2013). A finite element method by using bivariate splines for one dimensional heat equations. Journal of Information and Computational Science, 10(12), 3659–3666.

    Article  Google Scholar 

  11. Ole, C. (2014). Goh Say Song: From dual pairs of Gabor frames to dual pairs of wavelet frames and vice versa. Applied and Computational Harmonic Analysis, 36(2), 198–214.

    Article  MathSciNet  MATH  Google Scholar 

  12. Annalisa, B., & Carlotta, G. (2017). Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates. Mathematical Models and Methods in Applied Sciences, 27(14), 2781–2802.

    Article  MathSciNet  MATH  Google Scholar 

  13. Annalisa, B., & Garau Eduardo, M. (2017). Refinable spaces and local approximation estimates for hierarchical splines. IMA Journal of Numerical Analysis, 37(3), 1125–1149.

    MathSciNet  Google Scholar 

  14. Annalisa, B., & Carlotta, G. (2016). Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Mathematical Models and Methods in Applied Sciences, 26(1), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  15. Deepesh, T., Hendrik, S., Hiemstra René, R., & Hughes Thomas, J. R. (2017). Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316, 1005–1061.

    Article  MathSciNet  Google Scholar 

  16. Kruse, R., Nguyen-Thanh, N., De Lorenzis, L., & Hughes, T. J. R. (2015). Isogeometric collocation for large deformation elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 2296, 73–112.

    Article  MathSciNet  Google Scholar 

  17. Wang, R. H., & Li, C. J. (2006). Bivariate quartic spline spaces and quasi-interpolation operators. Journal of Computational and Applied Mathematics, 190, 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, H. F., & Zhang, Y. X. (2009). A newfourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation. Journal of Applied Mathematics and Computing., 230, 626–632.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Grant Nos. 11601056 and 51009017), the Fundamental Research Funds for the Central Universities (Grant Nos. 3132017055 and 3132016314), the National Scholarship Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, K., Zhang, M., Wang, N. et al. Bivariate Spline Finite Element Solver for Linear Hyperbolic Equations in Two-Dimensional Spaces. Wireless Pers Commun 102, 3067–3077 (2018). https://doi.org/10.1007/s11277-018-5326-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5326-0

Keywords

Navigation