Skip to main content
Log in

Design and Analysis of Tunable Voltage Differencing Inverting Buffered Amplifier (VDIBA) with Enhanced Performance and Its Application in Filters

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a high performance tunable Voltage Differencing Inverting Buffered Amplifier (VDIBA) where transconductance of VDIBA is enhanced by using programmable positive feedback technique and bandwidth is enhanced by using resistive compensation technique. The enhanced performance of proposed VDIBA is demonstrated by presenting detailed frequency analysis. Furthermore, it is verified that transconductance of proposed VDIBA can be enhanced up to 10.6 mS at tuning current (Ic) of 100 µA. Moreover, resistive compensation technique enhance bandwidth of propose circuit up to 263 MHz. To illustrate the effectiveness of proposed circuit, voltage mode universal biquad filter is designed as an application example. The pole frequency of proposed filter is tunable in range of 10.5–83.4 MHz. The proposed VDIBA and its filter applications are designed and simulated using TSMC 0.18 µm CMOS technology in Cadence virtuoso schematic composer at ± 0.6 V supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17, 15–32.

    Google Scholar 

  2. Bozomitu, R. G. (2014). A new linearized CCII-based fully differential CMOS transconductor used Gm-C active filters implementation. Wireless Personal Communications, 74(2), 615–637.

    Article  Google Scholar 

  3. Jin, J. (2016). Multi-function current differencing cascaded transconductance amplifier (MCDCTA) and its application to current-mode multiphase sinusoidal oscillator. Wireless Personal Communications, 86(2), 367–383.

    Article  Google Scholar 

  4. Lahiri, A., & Chowdhury, A. (2011). Four quadrant analog multiplier using dual-current-controlled current differencing buffered amplifier. Journal of Circuits, Systems, and Computers, 20(2), 223–231.

    Article  Google Scholar 

  5. Alpaslan, H., & Yuce, E. (2015). Inverting CFOA based lossless and lossy grounded inductor simulators. Circuits, Systems, and Signal Processing, 34(10), 3081–3100.

    Article  Google Scholar 

  6. Lahiri, A. (2009). Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integrated Circuits and Signal Processing, 61(2), 199–203.

    Article  Google Scholar 

  7. Shah, N. A., & Rather, M. F. (2006). Voltage mode OTA based active-C universal filter and its transformation into CFA based RC-filter. Indian Journal of Pure and Applied Physics, 44(5), 402–406.

    Google Scholar 

  8. Kacar, F., Yesil, A., & Noori, A. (2012). New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering, 21(1), 333–339.

    Google Scholar 

  9. Horng, J. W. (2003). High input impedance voltage-mode universal biquadratic filter using two OTAs and one CCII. International Journal of Electronics, 90(3), 185–191.

    Article  Google Scholar 

  10. Ranjan, A., & Paul, S. K. (2011). Voltage mode universal biquad using CCCII. Active and Passive Electronic Components, 2011. https://doi.org/10.1155/2011/439052.

  11. Herencsar, N., Koton, J., & Vrba, K. (2009). Single CCTA–based universal biquadratic filters employing minimum components. International Journal of Computer and Electrical Engineering, 1(3), 307–310.

    Article  Google Scholar 

  12. Siripruchyanun, M., & Jaikla, W. (2008). Current controlled current conveyor transconductance amplifier (CCCCTA): A building block for analog signal processing. Electrical Engineering, 90(6), 443–453.

    Article  Google Scholar 

  13. Herencsar, N., Sotner, O. C. R., Koton, J., & Vrba, K. (2013). New resistorless tunable voltage- mode universal filter using single VDIBA. Analog Integrated Circuits Signal Process, 76(2), 251–260.

    Article  Google Scholar 

  14. Pushkar, K. L., Bhaskar, D. R., & Prasad, D. (2014). Voltage-mode new universal biquad filter configuration using a single VDIBA. Circuits, Systems, and Signal Processing, 33(1), 275–285.

    Article  Google Scholar 

  15. Gupta, M., Srivastava, R., & Singh, U. (2015). Low-voltage low-power FGMOS based VDIBA and its application as universal filter. Microelectronics Journal, 46(2), 125–134.

    Article  Google Scholar 

  16. Herencsar, N., Koton, J., Minaei, S., Yuce, E., & Vrba, K. (2011). Novel resistorless dual-output VM all pass filter employing VDIBA. In Proceedings of the 7th international conference on electrical and electronics engineering-ELECO 2011 (pp. 72–74).

  17. Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 74(1), 141–154.

    Article  Google Scholar 

  18. Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters, 31(4), 248–250.

    Article  Google Scholar 

  19. Gupta, M., Aggarwal, P., Singh, P., & Jindal, N. K. (2009). Low voltage current mirrors with enhanced bandwidth. Analog Integrated Circuits and Signal Processing, 59(1), 97–103.

    Article  Google Scholar 

  20. Gupta, M., & Singh, U. (2012). A new flipped voltage follower with enhanced bandwidth and low output impedance. Analog Integrated Circuits and Signal Processing, 72(1), 279–288.

    Article  Google Scholar 

  21. Allen, P. E., & Holberg, D. R. (2013). CMOS analog circuit design (pp. 186–189). Oxford: Oxford University Press.

    Google Scholar 

  22. Sotner, R., Jerabek, J., & Herencsar, N. (2013). Voltage differencing buffered/inverted amplifiers and their applications for signal generation. Radioengineering, 22(2), 490–504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Gupta, M. Design and Analysis of Tunable Voltage Differencing Inverting Buffered Amplifier (VDIBA) with Enhanced Performance and Its Application in Filters. Wireless Pers Commun 100, 877–894 (2018). https://doi.org/10.1007/s11277-018-5355-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5355-8

Keywords

Navigation