Skip to main content
Log in

Design and Implementation of Optical Signal Reinstatement Technique for High DPSK RZ Transceiver Scheme

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Optical signal reinstatement (OSR) is a common technique used in high-speed communication systems. OSR can be achieved using various techniques such as; semiconductor optical amplifiers, optical parametric amplifiers, optical loop mirror, and etc. The existing OSR techniques of a maximum speed of 40 Gb/s for long haul communication of 300 km transmission distance offer the 10−10 BER of and noise (phase and amplitude) mitigation. Presently, the existing OSR techniques require low BER, strong noise rejection for more than 40 Gb/s degraded signal. In this work, optical signal restoration technique is developed for 100 Gb/s degraded signal for 400 km transmission distance. The proposed technique is designed using 2R and PSA. The benefit for using 2R with PSA is that 2R (re-amplify regenerate) the signal, while PSA is used to mitigate the amplitude and phase noises respectively. The developed technique is implemented for DPSK-RZ transceiver system and offers the BER of 10−21 and noise mitigation of more than 90% for DPSK-RZ transceiver system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hecht, J. (2015). Understanding fiber optics. Seattle: CreateSpace Independent Publishing Platform.

    Book  Google Scholar 

  2. Djordjevic, I. B., Minkov, L. L., & Batshon, H. G. (2008). Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE Journal on Selected Areas in Communications, 26(6), 73–83.

    Article  Google Scholar 

  3. Lucek, J. K., & Smith, K. (1993). All-optical signal regenerator. Optics Letters, 18(15), 1226–1228.

    Article  Google Scholar 

  4. Louis, P. F. (1972). U.S. Patent No. 3,671,875. Washington, DC: U.S. Patent and Trademark Office.

  5. Connelly, M. J. (2007). Semiconductor optical amplifiers. New York: Springer.

    Google Scholar 

  6. Andrekson, P. A., Petropoulos, P., Radic, S., Peucheret, C., & Jazayerifar, M. (2015). Fiber optical parametric amplifiers in optical communication systems. Laser and Photonics Reviews, 9(1), 50–74.

    Article  Google Scholar 

  7. Das, B., Abdullah, M. F. L., Shah, N. S. M., Ahmed, L. M. A., & Pandey, B. (2017). Development of new all-optical signal regeneration technique. Wireless Personal Communications, 95(2), 523–537.

    Article  Google Scholar 

  8. Das, B., Abdullah, M. F. L., Chowdhry, B. S., & Shah, N. S. M. (2017). A novel signal regeneration technique for high speed DPSK communication systems. Wireless Personal Communications, 96(2), 3249–3273.

    Article  Google Scholar 

  9. Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. (2014). All-optical signal processing. Journal of Lightwave Technology, 32(4), 660–680.

    Article  Google Scholar 

  10. Weik, M. (2012). Fiber optics standard dictionary. New York: Springer.

    Google Scholar 

  11. Rohde, M., Caspar, C., Heimes, N., Konitzer, M., Bachus, E. J., & Hanik, N. (2000). Robustness of DPSK direct detection transmission format in standard fibre WDM systems. Electronics Letters, 36(17), 1483–1484.

    Article  Google Scholar 

  12. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2017). Development of all optical signal regeneration method for 100 Gb/s differential phase shift keying degraded signal. In 9th international conference on robotic, vision, signal processing and power applications (pp. 527–534). Singapore: Springer.

  13. Marcuse, D. (1983). Classical derivation of the laser rate equation. IEEE Journal of Quantum Electronics, 19(8), 1228–1231.

    Article  Google Scholar 

  14. Andre, P. S., Pinto, A. N., Pinto, J. L., & da Rocha, F. (1999). Extraction of DFB laser rate equations parameters for optical simulation purposes. Conftele, 99, 561–564.

    Google Scholar 

  15. Senior, J. M., & Jamro, M. Y. (2009). Optical fiber communications: Principles and practice. Madison: Pearson Education.

    Google Scholar 

  16. Van Liet, D. (Ed.). (2012). Nonlinear optical systems: Principles, phenomena, and advanced signal processing. Boca Raton: CRC Press.

    Google Scholar 

  17. Le, N. B. (2015). Advanced digital optical communications. Philadelphia: Taylor and Francis.

    Google Scholar 

  18. Lutovac, M. D., Tošić, D. V., & Evans, B. L. (2001). Filter design for signal processing using MATLAB and mathematica. Upper Saddle River: Prentice Hall.

    Google Scholar 

  19. Le, N. B. (2013). Digital processing: Optical transmission and coherent receiving techniques. Boca Raton: CRC Press.

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Universiti Tun Huseein Onn Malaysia and Department of Electronic Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Abdullah, M.F.L., Pandey, B. et al. Design and Implementation of Optical Signal Reinstatement Technique for High DPSK RZ Transceiver Scheme. Wireless Pers Commun 106, 1767–1786 (2019). https://doi.org/10.1007/s11277-018-5605-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5605-9

Keywords

Navigation