Skip to main content
Log in

Performance Analysis of Space-Air-Ground Integrated Network (SAGIN) Over an Arbitrarily Correlated Multivariate FSO Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The space-air-ground integrated network (SAGIN) system interconnect several networks in order to achieve a large network topology that is capable of efficient sharing of global information and resources. Nevertheless, the associated communication facilities between the mobile platforms and air-to-ground links are limited to a low-bit rate radio-based technology. Besides, the huge services to be supported require a high capacity link in order to handle multiple information in parallel and in real-time. The free-space optical (FSO) communication system has inherent features to support the network demands. However, support for drifting in the SAGIN system could be challenging for the FSO line-of-sight links because of the requirement for alignment between the receiver and transmitter modules. Also, the FSO system performance is hindered by the atmospheric turbulence-induced fading. In addition, the unmanned aerial vehicles in the SAGIN system can operate in swarm mode to achieve system diversity in order to alleviate turbulence-induced fading. However, this can lead to channel correlation that can impair the system performance. In this paper, we consider the effect of arbitrarily correlated FSO channel on the system performance. To achieve this, we employ exponential model for modeling the correlations between the apertures. Furthermore, to account for the spatial correlation in the air-to-ground as well as air-to-air communications in the SAGIN system, we consider a multivariate Gamma–Gamma (\(\varGamma \varGamma\)) distribution. The results of the study sufficiently quantify the effects of the atmospheric turbulence-induced fading as well as correlation on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chlestil, C., Leitgeb, E., Schmitt, N. P., Muhammad, S. S., Zettl, K., & Rehm, W. (2006). Reliable optical wireless links within UAV swarms. In 2006 international conference on transparent optical networks (Vol. 4, pp. 39–42). https://doi.org/10.1109/ICTON.2006.248491.

  2. Wu, Z., Kumar, H., & Davari, A. (2005). Performance evaluation of OFDM transmission in UAV wireless communication. In Proceedings of the thirty-seventh southeastern symposium on system theory, 2005. SSST ’05 (pp. 6–10). https://doi.org/10.1109/SSST.2005.1460867.

  3. Heng, K. H., Liu, N., He, Y., Zhong, W. D., & Cheng, T. H. (2008). Adaptive beam divergence for inter-UAV free space optical communications. In 2008 IEEE PhotonicsGlobal@Singapore (pp. 1–4). https://doi.org/10.1109/IPGC.2008.4781473.

  4. Zhou, L., Last, M., Milanovic, V., Kahn, J. M., & Pister, K. S. J. (2003). Two-axis scanning mirror for free-space optical communication between UAVs. In 2003 IEEE/LEOS international conference on optical MEMS (Cat. No.03EX682) (pp. 157–158). https://doi.org/10.1109/OMEMS.2003.1233514.

  5. Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. In Pinho, P. (ed.), Optical communication technology, InTech, Rijeka, chap 02. https://doi.org/10.5772/intechopen.69113.

  6. Alimi, I. A., Monteiro. P. P., & Teixeira, A. L. (2017). Analysis of multiuser mixed RF/FSO relay networks for performance improvements in cloud computing-based radio access networks (CC-RANs). Optics Communications 402(Supplement C), 653–661. https://doi.org/10.1016/j.optcom.2017.06.097. http://www.sciencedirect.com/science/article/pii/S0030401817305734.

  7. Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., & Cheng, J. (2015). Emerging optical wireless communications-advances and challenges. IEEE Journal on Selected Areas in Communications, 33(9), 1738–1749. https://doi.org/10.1109/JSAC.2015.2458511.

    Article  Google Scholar 

  8. Alimi, I. A., Shahpari, A., Monteiro, P. P., & Teixeira, A. L. (2017). Effects of diversity schemes and correlated channels on owc systems performance. Journal of Modern Optics, 64(21), 2298–2305. https://doi.org/10.1080/09500340.2017.1357851.

    Article  Google Scholar 

  9. Alimi, I. A., Abdalla, A. M., Rodriguez, J., Monteiro, P. P., & Teixeira, A. L. (2017). Spatial interpolated lookup tables (LUTs) models for ergodic capacity of MIMO FSO systems. IEEE Photonics Technology Letters, 29(7), 583–586. https://doi.org/10.1109/LPT.2017.2669337.

    Article  Google Scholar 

  10. Alimi, I., Shahpari, A., Ribeiro, V., Sousa, A., Monteiro, P., & Teixeira, A. (2017). Channel characterization and empirical model for ergodic capacity of free-space optical communication link. Optics Communications, 390, 123–129. https://doi.org/10.1016/j.optcom.2017.01.001. http://www.sciencedirect.com/science/article/pii/S0030401817300019.

  11. Chan, V. W. S. (2006). Free-space optical communications. Journal of Lightwave Technology, 24(12), 4750–4762. https://doi.org/10.1109/JLT.2006.885252.

    Article  Google Scholar 

  12. Leitgeb, E., Zettl, K., Muhammad, S. S., Schmitt, N., & Rehm, W. (2007). Investigation in free space optical communication links between unmanned aerial vehicles (UAVs). In 2007 9th international conference on transparent optical networks (Vol. 3, pp. 152–155). https://doi.org/10.1109/ICTON.2007.4296268.

  13. Muhammad, S. S., Plank, T., Leitgeb, E., Friedl, A., Zettl, K., Javornik, T., & Schmitt, N. (2008). Challenges in establishing free space optical communications between flying vehicles. In 2008 6th international symposium on communication systems, networks and digital signal processing (pp. 82–86). https://doi.org/10.1109/CSNDSP.2008.4610721.

  14. Qi, W., Hou, W., Song, Q., Guo, L., & Jamalipour, A. (2016). Topology control and routing based on adaptive RF/FSO switching in space-air integrated networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). https://doi.org/10.1109/GLOCOM.2016.7842334.

  15. Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., & Shen, X. S. (2017). Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine, 55(7), 101–109. https://doi.org/10.1109/MCOM.2017.1601156.

    Article  Google Scholar 

  16. Liu, H., Zhang, J., & Cheng, L. L. (2010). Application examples of the network fixed point theory for space-air-ground integrated communication network. In International congress on ultra modern telecommunications and control systems (pp. 989–993). https://doi.org/10.1109/ICUMT.2010.5676493.

  17. Liu, X., Qiu, M., Wang, X., Liu, W., & Cai, K. (2017). Energy efficiency optimization for communication of air-based information network with guaranteed timing constraints. Journal of Signal Processing Systems, 86(2), 299–312. https://doi.org/10.1007/s11265-016-1125-6.

    Article  Google Scholar 

  18. Baister, G., & Gatenby, P. V. (1994). Pointing, acquisition and tracking for optical space communications. Electronics Communication Engineering Journal, 6(6), 271–280. https://doi.org/10.1049/ecej:19940605.

    Article  Google Scholar 

  19. Toyoshima, M. (2005). Trends in satellite communications and the role of optical free-space communications [Invited]. Journal of Optical Networking, 4(6), 300–311. https://doi.org/10.1364/JON.4.000300. http://jon.osa.org/abstract.cfm?URI=jon-4-6-300.

  20. Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys Tutorials, 19(1), 57–96. https://doi.org/10.1109/COMST.2016.2603518.

    Article  Google Scholar 

  21. Vishnevskii, V. M., Semenova, O. V., & Sharov, S. Y. (2013). Modeling and analysis of a hybrid communication channel based on free-space optical and radio-frequency technologies. Automation and Remote Control, 74(3), 521–528. https://doi.org/10.1134/S0005117913030144.

    Article  MathSciNet  MATH  Google Scholar 

  22. Alimi, I. A., Monteiro, P. P., & Teixeira, A. L. (2017). Outage probability of multiuser mixed RF/FSO relay schemes for heterogeneous cloud radio access networks (H-CRANs). Wireless Personal Communications, 95(1), 27–41. https://doi.org/10.1007/s11277-017-4413-y.

    Article  Google Scholar 

  23. Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2017). Towards an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communications Surveys Tutorials, 20(1), 708–769. https://doi.org/10.1109/COMST.2017.2773462.

    Article  Google Scholar 

  24. Yang, G., Khalighi, M. A., Bourennane, S., & Ghassemlooy, Z. (2012). Approximation to the sum of two correlated Gamma–Gamma variates and its applications in free-space optical communications. IEEE Wireless Communications Letters, 1(6), 621–624. https://doi.org/10.1109/WCL.2012.091312.120469.

    Article  Google Scholar 

  25. Aboderin, O., & Alimi, I. A. (2015). Modeling land mobile satellite channel and mitigation of signal fading. American Journal of Mobile Systems, Applications and Services, 1(1), 46–53. http://files.aiscience.org/journal/article/html/70110009.html.

  26. Yang, G., Khalighi, M. A., Ghassemlooy, Z., & Bourennane, S. (2013). Performance evaluation of correlated-fading space-diversity FSO links. In 2013 2nd international workshop on optical wireless communications (IWOW) (pp. 71–73). https://doi.org/10.1109/IWOW.2013.6777780.

  27. Zhang, J., Matthaiou, M., Karagiannidis, G. K., & Dai, L. (2016). On the multivariate Gamma–Gamma distribution with arbitrary correlation and applications in wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 3834–3840. https://doi.org/10.1109/TVT.2015.2438192.

    Article  Google Scholar 

  28. Alimi, I., Shahpari, A., Ribeiro, V., Kumar, N., Monteiro, P., & Teixeira, A. (2016). Optical wireless communication for future broadband access networks. In 2016 21st European conference on networks and optical communications (NOC) (pp. 124–128). https://doi.org/10.1109/NOC.2016.7506998.

  29. Al, Naboulsi M., Sizun, H., & de Fornel, F. (2004). Fog attenuation prediction for optical and infrared waves. Optical Engineering, 43(2), 319–329. https://doi.org/10.1117/1.1637611.

    Article  Google Scholar 

  30. Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710. https://doi.org/10.1109/JLT.2007.899174.

    Article  Google Scholar 

  31. Sandalidis, H. G., Tsiftsis, T. A., & Karagiannidis, G. K. (2009). Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 27(20), 4440–4445. https://doi.org/10.1109/JLT.2009.2024169.

    Article  Google Scholar 

  32. Andrews, L., & Phillips, R. (2005). Laser beam propagation through random media. Bellingham: SPIE Press, Press Monographs.

    Book  Google Scholar 

  33. Kiasaleh, K. (2005). Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Transactions on Communications, 53(9), 1455–1461. https://doi.org/10.1109/TCOMM.2005.855009.

    Article  Google Scholar 

  34. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: System and channel modelling with MATLAB®. New York: Taylor & Francis.

    Google Scholar 

  35. Yang, Y.-Q., Chi, X.-F., Shi, J.-L., & Zhao, L.-L. (2015). Analysis of effective capacity for free-space optical communication systems over gamma-gamma turbulence channels with pointing errors. Optoelectronics Letters, 11(3), 213–216. https://doi.org/10.1007/s11801-015-5038-6.

    Article  Google Scholar 

  36. Aggarwal, M., Garg, P., & Puri, P. (2015). Ergodic capacity of SIM-based DF relayed optical wireless communication systems. IEEE Photonics Technology Letters, 27(10), 1104–1107. https://doi.org/10.1109/LPT.2015.2407897.

    Article  Google Scholar 

  37. Choi, J., & Love, D. J. (2014). Bounds on eigenvalues of a spatial correlation matrix. IEEE Communications Letters, 18(8), 1391–1394. https://doi.org/10.1109/LCOMM.2014.2332993.

    Article  Google Scholar 

  38. Lim, H., Jang, Y., & Yoon, D. (2017). Bounds for eigenvalues of spatial correlation matrices with the exponential model in MIMO systems. IEEE Transactions on Wireless Communications, 16(2), 1196–1204. https://doi.org/10.1109/TWC.2016.2641419.

    Article  Google Scholar 

  39. Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 5(9), 369–371. https://doi.org/10.1109/4234.951380.

    Article  Google Scholar 

  40. Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free-space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6, 2813–2819. https://doi.org/10.1109/TWC.2007.06109.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Fundaçõo para a Ciência e a Tecnologia under the Ph.D. Grant PD/BD/52590/2014, in part by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework [Project HeatIT with Nr. 017942 (CENTRO-01-0247-FEDER-017942)] and by the FCT/MEC through the national funds under the project, COMPRESS - PTDC/EEI-TEL/7163/2014, in part by the Integrated Programmes “SOCA” (CENTRO-01-0145-FEDER-000010) and “ORCIP” (POCI-01-0145-FEDER- 022141) co-funded by Centro 2020 Program, Portugal 2020, European Union, through the European Regional Development Fund, and in part by the FEDER, through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework , Project, RETIOT, POCI-01-0145-FEDER-016432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo P. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimi, I.A., Mufutau, A.O., Teixeira, A.L. et al. Performance Analysis of Space-Air-Ground Integrated Network (SAGIN) Over an Arbitrarily Correlated Multivariate FSO Channel. Wireless Pers Commun 100, 47–66 (2018). https://doi.org/10.1007/s11277-018-5620-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5620-x

Keywords

Navigation