Skip to main content
Log in

Impact of Primary Interference on Secrecy Performance of Physical Layer Security in Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In cognitive radio networks (CRNs), primary interference is either neglected or considered as an additive white Gaussian random variable (r.v.). Current literature investigated such a case in evaluating their security capability. Generalizing this literature by considering primary interference power as exponentially-distributed r.v., we propose an analysis framework on impact of primary interference on security capability of CRNs under Rayleigh fading channels, peak transmit power constraint, and interference power constraint. The proposed framework is corroborated by Monte-Carlo simulations and illustrates that information securing performance in CRNs is saturated at either large values of peak transmit power or peak interference power, and can be enhanced by primary interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Elsevier Physical Communication, 18(2), 64–84.

    Article  Google Scholar 

  2. FCC. (2002). Spectrum policy task force report, ET Docket 02–135.

  3. Tavana, M., Rahmati, A., Shah-Mansouri, V., & Maham, B. (2017). Cooperative sensing with joint energy and correlation detection in cognitive radio networks. IEEE Communications Letters, 21(1), 132–135.

    Article  Google Scholar 

  4. Badoi, C. I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.

    Article  Google Scholar 

  5. Ho-Van, K., Sofotasios, P. C., & Freear, S. (2014). Underlay cooperative cognitive networks with imperfect Nakagami-m fading channel information and strict transmit power constraint: Interference statistics and outage probability analysis. IEEE/KICS Journal of Communications and Networks, 16(1), 10–17.

    Article  Google Scholar 

  6. Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  7. Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  8. Guimaraes, F. R. V., da Costa, D. B., Tsiftsis, T. A., Cavalcante, C. C., & Karagiannidis, G. K. (2014). Multi-user and multi-relay cognitive radio networks under spectrum sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.

    Article  Google Scholar 

  9. Liu, Y., Chen, H. H., & Wang, L. (2017). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.

    Article  Google Scholar 

  10. Zhihui, S., Yi, Q., & Song, C. (2013). On physical layer security for cognitive radio networks. IEEE Network, 27, 28–33.

    Article  Google Scholar 

  11. Li, J., Feng, Z., Feng, Z., & Zhang, P. (2015). A survey of security issues in cognitive radio networks. China Communications, 12, 132–150.

    Article  Google Scholar 

  12. Yulong, Z., Jia, Z., Liuqing, Y., Ying-chang, L., & Yu-dong, Y. (2015). Securing physical-layer communications for cognitive radio networks. IEEE Communications Magazine, 53, 48–54.

    Google Scholar 

  13. Sharma, R., & Rawat, D. (2015). Securing physical-layer communications for cognitive radio networks radio networks: A survey. IEEE Communications Surveys & Tutorials, 17, 1023–1043.

    Article  Google Scholar 

  14. Liang, Y., Poor, H. V., & Shamai, S. (2008). Information theoretic security (Vol. 5, No. 1–5, pp. 355–580). Breda: Now Publishers.

    MATH  Google Scholar 

  15. Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  16. Pei, Y., Liang, Y., Teh, K., & Li, K. (2010). Secure communication over MISO cognitive radio channels. IEEE Transactions on Wireless Communications, 9(4), 1494–1502.

    Article  Google Scholar 

  17. Yang, L., Jiang, H., Vorobyov, S., Chen, J., & Hailin, Z. (2016). Secure communications in underlay cognitive radio networks: User scheduling and performance analysis. IEEE Communications Letters, 20(6), 1191–1194.

    Article  Google Scholar 

  18. Yulong, Z., Xuelong, L., & Ying-Chang, L. (2014). Secrecy outage and diversity analysis of cognitive radio systems. IEEE JSAC, 32(11), 2222–2236.

    Google Scholar 

  19. Hui, Z., Hequn, L., Yaping, L., Chaoqing, T., & Gaofeng, P. (2015). Physical layer security of maximal ratio combining in underlay cognitive radio unit over Rayleigh fading channels. In Proceedings of IEEE ICCSN, Chengdu, China (pp. 201–205), June 6–7, 2015.

  20. Xu, X., He, B., Yang, W., Zhou, X., & Cai, Y. (2016). Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers. IEEE Transactions on Information Forensics and Security, 11(2), 373–387.

    Article  Google Scholar 

  21. Wenli, L., Li, G., Tianyu, K., Jianwei, Z., & Jiaru, L. (2015). Secure cognitive radio system with cooperative secondary networks. In Proceedings of IEEE ICT, Sydney, Australia (pp. 6–10), April 27–29, 2015.

  22. Elkashlan, M., Wang, L., Duong, T. Q., Karagiannidis, G. K., & Nallanathan, A. (2015). On the security of cognitive radio networks. IEEE Transactions on Vehicular Technology, 64, 3790–3795.

    Article  Google Scholar 

  23. Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., et al. (2016). Secrecy outage performance for SIMO underlay cognitive radio systems with generalized selection combining over Nakagami-m channels. IEEE Transactions on Vehicular Technology, 65(12), 10126–10132.

    Article  Google Scholar 

  24. Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Transactions on Signal Processing, 59(4), 1683–1693.

    Article  MathSciNet  Google Scholar 

  25. Lei, H., Gao, C., Ansari, I., Guo, Y., Zou, Y., Pan, G., et al. (2017). Secrecy outage performance of transmit antenna selection for MIMO underlay cognitive radio systems over Nakagami-m channels. IEEE Transactions on Vehicular Technology, 66(3), 2237–2250.

    Article  Google Scholar 

  26. Fang, B., Qian, Z., Shao, W., & Zhong, W. (2016). Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Transactions on Vehicular Technology, 65(8), 6753–6758.

    Article  Google Scholar 

  27. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Wireless Communications Letters, 5(3), 288–291.

    Article  Google Scholar 

  28. Ho-Van, K. (2016). Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers. IEEE/KICS Journal of Communications and Networks, 18(3), 288–298.

    Google Scholar 

  29. Biglieri, E., Proakis, J., & Shamai, S. (1998). Fading channels: Informationtheoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692.

    Article  MathSciNet  MATH  Google Scholar 

  30. Barros, J. & Rodrigues, M. (2006). Secrecy capacity of wireless channels. In Proceedings of the IEEE International Symposium on Information Theory (pp. 356–360).

  31. Zou, Y., Wang, X., & Shen, W. (2013). Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Wireless Communications, 61(12), 5103–5113.

    Article  Google Scholar 

  32. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego: Academic.

    MATH  Google Scholar 

  33. Ahmed, N., Khojastepour, M., & Aazhang, B. (2004). Outage minimization and optimal power control for the fading relay channel. In Proceedingds of IEEE Information Theory Workshop, San Antonio, TX, USA (pp. 458–462).

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2017-20-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Appendices

Appendix 1: Proof of Theorem 1

Using the explicit forms of \(A_{sd}\), \(B_{sdt}\), and D in (12), (13), and (28), respectively, one can rewrite (31) as

$$\begin{aligned} {{\mathcal{Q}}_1} = {\mathrm{{E}}_{{{\left| {{h_{sr}}} \right| }^2}}}\left\{ {\frac{{{{\bar{B}}_{sdt}}{P_s}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_s}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_s} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) }}} \right\} \end{aligned}$$
(66)

It is recalled that \({P_s} = \min \left( {\frac{{{I_m}}}{{{{\left| {{h_{sr}}} \right| }^2}}},{P_m}} \right) \) and hence, by the law of total probability, one can simplify (66) as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_1} &=\int \limits _0^\infty {\frac{{{{\bar{B}}_{sdt}}\min \left( {\frac{{{I_m}}}{x},{P_m}} \right) {e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}\min \left( {\frac{{{I_m}}}{x},{P_m}} \right) }}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}\min \left( {\frac{{{I_m}}}{x},{P_m}} \right) - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\min \left( {\frac{{{I_m}}}{x},{P_m}} \right) + {2^{{C_0}}} - 1} \right) }}{f_{{{\left| {{h_{sr}}} \right| }^2}}}\left( x \right) dx} \\ &=\int \limits _0^{\frac{{{I_m}}}{{{P_m}}}} {\frac{{{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }}\frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx} \\&\quad + \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {\frac{{{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) }}\frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx}\\ &=\frac{{{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }}\left( {1 - {e^{ - \frac{{{I_m}}}{{{P_m}{\lambda _{sr}}}}}}} \right) \\&\quad + \frac{{{{\bar{B}}_{sdt}}{I_m}{2^{ - {C_0}}}}}{{{\lambda _{sr}}\left( {{2^{ - {C_0}}} - 1} \right) }}\int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {\frac{{{e^{ - \left( {\frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{I_m}}} + \frac{1}{{{\lambda _{sr}}}}} \right) x}}}}{{x + \frac{{{{\bar{B}}_{swt}} - {2^{ - {C_0}}}{{\bar{B}}_{sdt}}}}{{{2^{ - {C_0}}} - 1}}{I_m}}}dx} \end{aligned} \end{aligned}$$
(67)

The last integral follows the general form of

$$\begin{aligned} \mathcal{L}(a,b,c)= \int \limits _a^\infty {\frac{{{e^{ - by}}}}{{y + c}}dy} \end{aligned}$$
(68)

and hence, can be solved with the aid of [32, Eq. (358.2)] as shown in (36), completing the proof.

Appendix 2: Proof of Lemma 3

With appropriate variable changes in (34), one can rewrite (37) as

$$\begin{aligned} \begin{aligned} \Phi \left( {a,b,c,g,l,m} \right)&= - \int \limits _a^\infty {\frac{{{e^{ - bx}}}}{{x + c}}{e^{gx\left( {\frac{l}{x} + m} \right) }}Ei\left( { - gx\left[ {\frac{l}{x} + m} \right] } \right) dx}\\&= - {e^{gl}}\underbrace{\int \limits _a^\infty {\frac{{{e^{ - \left( {b - mg} \right) x}}}}{{x + c}}Ei\left( { - mgx - gl} \right) dx} }_{\Upsilon \left( {a,b - mg,c,gm,gl} \right) } \end{aligned} \end{aligned}$$
(69)

which coincides with (38), where

$$\begin{aligned} \Upsilon \left( {a,b,c,g,l} \right) = \int \limits _a^\infty {\frac{{{e^{ - bx}}}}{{x + c}}Ei\left( { - gx - l} \right) dx} \end{aligned}$$
(70)

Therefore, in order to complete the proof of Lemma 3, we must prove that (70) is represented in closed-form as (39). Towards this end, performing the variable change and then applying the series representation of Ei(x) in [32, Eq. (8.214.1)] results in

$$\begin{aligned} \begin{aligned} \Upsilon \left( {a,b,c,g,l} \right)&= - \frac{1}{g}\int \limits _{ - ag - l}^{ - \infty } {\frac{{{e^{b\frac{{y + l}}{g}}}}}{{ - \frac{{y + l}}{g} + c}}Ei\left( y \right) dy} \\&= - {e^{\frac{{bl}}{g}}}\int \limits _{ - \infty }^{ - ag - l} {\frac{{{e^{\frac{b}{g}y}}}}{{y + l - cg}}\left( {\texttt {C} + \ln \left( { - y} \right) + \sum \limits _{k = 1}^\infty {\frac{{{y^k}}}{{k \cdot k!}}} } \right) dy} \end{aligned} \end{aligned}$$
(71)

By denoting

$$\begin{aligned} {{\mathcal{K}}_1}&= \int \limits _{ - \infty }^{ - ag - l} {\frac{{{e^{\frac{b}{g}y}}}}{{y + l - cg}}dy} \end{aligned}$$
(72)
$$\begin{aligned} {{\mathcal{K}}_2}&= \int \limits _{ - \infty }^{ - ag - l} {\frac{{{e^{\frac{b}{g}y}}}}{{y + l - cg}}\ln \left( { - y} \right) dy} \end{aligned}$$
(73)
$$\begin{aligned} {{\mathcal{K}}_3}&= \int \limits _{ - \infty }^{ - ga - l} {\frac{{{y^k}}}{{y - cg + l}}{e^{\frac{b}{g}y}}dy}, \end{aligned}$$
(74)

it is apparent that (71) perfectly matches (39). As such, the proof is completed after solving integrands in (72), (73), and (74) as (40), (41), and (47), respectively.

Starting with \({{\mathcal{K}}_1}\). Performing the variable change, one can rewrite \({{\mathcal{K}}_1}\) as

$$\begin{aligned} {{\mathcal{K}}_1} = - \int \limits _\infty ^{ag + l} {\frac{{{e^{ - \frac{b}{g}x}}}}{{ - x - cg + l}}dx} = - \int \limits _{ag + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{x + cg - l}}dx} \end{aligned}$$
(75)

Using (68), one can represent (75) as (40).

Performing the variable change and then applying the series representation of \({\ln \left( x \right) }\) in [32, Eq. (1.512.2)], one can simplify \({{\mathcal{K}}_2}\) as

$$\begin{aligned} \begin{aligned} {{\mathcal{K}}_2}&= - \int \limits _\infty ^{ag + l} {\frac{{{e^{ - \frac{b}{g}x}}}}{{ - x - cg + l}}\ln \left( x \right) dx} \\&= - \int \limits _{ag + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{x + cg - l}}\left[ {2\sum \limits _{k = 1}^\infty {\frac{1}{{2k - 1}}{{\left( {\frac{{x - 1}}{{x + 1}}} \right) }^{2k - 1}}} } \right] dx} \\&= - \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}} \int \limits _{ag + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{x + cg - l}}{{\left( {\frac{{x - 1}}{{x + 1}}} \right) }^{2k - 1}}dx} \end{aligned} \end{aligned}$$
(76)

Applying the binomial expansion in [32, Eq. (1.111)] to \((x-1)^{2k-1}\) of the above, one obtains

$$\begin{aligned} \begin{aligned} {{\mathcal{K}}_2}&= - \sum \nolimits _{k = 1}^\infty {\frac{2}{{2k - 1}}} \int \limits _{ag + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{x + cg - l}}\frac{{\sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) {x^i}{{\left( { - 1} \right) }^{2k - 1 - i}}} }}{{{{\left( {x + 1} \right) }^{2k - 1}}}}dx} \\&= - \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}\sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) {{\left( { - 1} \right) }^{2k - 1 - i}}} } \int \limits _{ag + l}^\infty {\frac{{{x^i}{e^{ - \frac{b}{g}x}}}}{{\left( {x + cg - l} \right) {{\left( {x + 1} \right) }^{2k - 1}}}}dx}, \end{aligned} \end{aligned}$$
(77)

where the notation \(\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}}\right) = \frac{{\left( {2k - 1} \right) !}}{{i!\left( {2k - 1 - i} \right) !}}\) is the binomial coefficient.

Again performing the variable change and then applying the binomial expansion to simplify the above as

$$\begin{aligned} \begin{aligned} {{\mathcal{K}}_2} &=- \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}\sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) {{\left( { - 1} \right) }^{2k - 1 - i}}} } \int \limits _{ag + l + 1}^\infty {\frac{{{{\left( {y - 1} \right) }^i}{e^{ - \frac{b}{g}\left( {y - 1} \right) }}}}{{\left( {y - 1 + cg - l} \right) {y^{2k - 1}}}}dy} \\ &=- \sum \limits _{k = 1}^\infty {\frac{{{e^{\frac{b}{g}}}2}}{{2k - 1}}\sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) {{\left( { - 1} \right) }^{2k - 1 - i}}} } \int \limits _{ag + l + 1}^\infty \frac{{{e^{ - \frac{b}{g}y}}}}{{\left( {y + cg - l - 1} \right) {y^{2k - 1}}}}\\&\quad \left[ {\sum \limits _{j = 0}^i {\left( {\begin{array}{c} i \\ j \\ \end{array}} \right) {y^j}{{\left( { - 1} \right) }^{i - j}}} } \right] dy\\ &=2{e^{\frac{b}{g}}}\sum \limits _{k = 1}^\infty {\sum \limits _{i = 0}^{2k - 1} {\sum \limits _{j = 0}^i {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) \left( {\begin{array}{c} i \\ j \\ \end{array}} \right) } \frac{{{{\left( { - 1} \right) }^j}}}{{2k - 1}}} } \int \limits _{ag + l + 1}^\infty {\frac{{{y^j}{e^{ - \frac{b}{g}y}}}}{{\left( {y + cg - l - 1} \right) {y^{2k - 1}}}}dy} \end{aligned} \end{aligned}$$
(78)

By denoting

$$\begin{aligned} {\mathcal{M}} = \int \limits _{ag + l + 1}^\infty {\frac{{{y^j}{e^{ - \frac{b}{g}y}}}}{{\left( {y + cg - l - 1} \right) {y^{2k - 1}}}}dy}, \end{aligned}$$
(79)

it is apparent that (78) coincides (41). Therefore, we must prove that the integrand in (79) can be represented as (42) to complete the proof of (41). Toward this end, we consider two cases: \({j = 2k - 1}\) (Case 1) and \({j \ne 2k - 1}\) (Case 2). For Case 1, \({\mathcal{M}}\) is rewritten as \({\int \nolimits _{ag + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{y + cg - l - 1}}dy} }\), which becomes \({{\mathcal{L}}\left( {ag + l + 1,\frac{b}{g},cg - l - 1} \right) }\) as shown in (42). For Case 2, we denote \({\mathcal{M}} = {\int \nolimits _{ag + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{\left( {y + cg - l - 1} \right) {y^{2k - j - 1}}}}dy} }\) as \({\mathcal{W}}\). Combining two cases shows that (79) coincides (42). Therefore, the remaining work is to prove that \({\mathcal{W}}\) is given by (43).

Applying the partial fraction decomposition, \({\mathcal{W}}\) can be simplified as

$$\begin{aligned} {\mathcal{W}} = G\int \limits _{ag + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{y + cg - l - 1}}dy} + \sum \limits _{v = 1}^{2k - j - 1} {{K_{2k - j - 1 - v + 1}}} \int \limits _{ag + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{y^v}}}dy}, \end{aligned}$$
(80)

where G and \(K_m\) are defined in (44) and (45), respectively.

By denoting

$$\begin{aligned} {\mathcal{B}}\left( {a,b,v} \right) = \int \limits _a^\infty {\frac{{{e^{ - bx}}}}{{{x^v}}}dx}, \end{aligned}$$
(81)

it is obvious that (80) becomes (43). The function \({\mathcal{B}}\left( {a,b,v} \right) \) can be represented as (46) by firstly performing the variable change and then using [32, Eq. (3.381.6)].

Finally, we process \({{\mathcal{K}}_3}\). By performing the variable change and applying the binomial expansion, (74) is simplified as

$$\begin{aligned} \begin{aligned} {{\mathcal{K}}_3} &=- \int \limits _\infty ^{ag + l} {\frac{{{{\left( { - x} \right) }^k}}}{{ - x - cg + l}}{e^{ - \frac{b}{g}x}}dx} \\ &={\left( { - 1} \right) ^{k + 1}}\int \limits _{ag + l + cg - l}^\infty {\frac{{{{\left( {y + l - cg} \right) }^k}}}{y}{e^{ - \frac{b}{g}\left( {y + l - cg} \right) }}dy} \\ &={\left( { - 1} \right) ^{k + 1}}{e^{ - \frac{b}{g}\left( {l - cg} \right) }}\int \limits _{ag + cg}^\infty {\left[ {\sum \limits _{i = 0}^k {\left( {\begin{array}{c} k \\ i \\ \end{array}} \right) {y^i}{{\left( {l - cg} \right) }^{k - i}}} } \right] \frac{1}{y}{e^{ - \frac{b}{g}y}}dy} \\ &={\left( { - 1} \right) ^{k + 1}}{e^{ - \frac{b}{g}\left( {l - cg} \right) }}\sum \limits _{i = 0}^k {\left( {\begin{array}{c} k \\ i \\ \end{array}} \right) {{\left( {l - cg} \right) }^{k - i}}} \int \limits _{\left( {a + c} \right) g}^\infty {{y^{i - 1}}{e^{ - \frac{b}{g}y}}dy}\\ &={\left( { - 1} \right) ^{k + 1}}{e^{ - \frac{b}{g}\left( {l - cg} \right) }}\\& \quad \times \left[ {{{\left( {l - cg} \right) }^k}\int \limits _{\left( {a + c} \right) g}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{y}dy} + \sum \limits _{i = 1}^k {\left( {\begin{array}{c} k \\ i \\ \end{array}} \right) {{\left( {l - cg} \right) }^{k - i}}} \int \limits _{\left( {a + c} \right) g}^\infty {{y^{i - 1}}{e^{ - \frac{b}{g}y}}dy} } \right] \end{aligned} \end{aligned}$$
(82)

By denoting

$$\begin{aligned} {\mathcal{H}}\left( {a,b,i} \right) = \int \limits _a^\infty {{y^i}{e^{ - by}}dy}, \end{aligned}$$
(83)

whose exact closed form is given by (48) with the aid of [32, Eq. (3.351.2)], it is obvious that (82) exactly matches (47), completing the proof.

Appendix 3: Proof of Lemma 4

With appropriate variable changes in (34), one can rewrite (49) as

$$\begin{aligned} \begin{aligned} \Omega \left( {a,b,c,g,l,m} \right)&= - \int \limits _a^\infty {\frac{{{e^{ - bx}}}}{{{{\left( {x + c} \right) }^2}}}{e^{gx\left( {\frac{l}{x} + m} \right) }}Ei\left( { - gx\left[ {\frac{l}{x} + m} \right] } \right) dx} \\&= - {e^{gl}}\underbrace{\int \limits _a^\infty {\frac{{{e^{ - \left( {b - mg} \right) x}}}}{{{{\left( {x + c} \right) }^2}}}Ei\left( { - mgx - gl} \right) dx} }_{\Lambda \left( {a,b - mg,c,gm,gl} \right) } \end{aligned} \end{aligned}$$
(84)

which coincides with (50), where

$$\begin{aligned} \Lambda \left( {a,b,c,g,l} \right) = \int \limits _a^\infty {\frac{{{e^{ - bx}}}}{{{{\left( {x + c} \right) }^2}}}Ei\left( { - gx - l} \right) dx} \end{aligned}$$
(85)

Next, we must prove that (85) matches with (51). Toward this end, we firstly perform the variable change and then apply the series representation of Ei(x) in [32, Eq. (8.214.1)] as

$$\begin{aligned} \begin{aligned} \Lambda \left( {a,b,c,g,l} \right)&= - \frac{1}{g}\int \limits _{ - ga - l}^{ - \infty } {\frac{{{e^{b\frac{{y + l}}{g}}}}}{{{{\left( { - \frac{{y + l}}{g} + c} \right) }^2}}}Ei\left( y \right) dy} \\&= - g\int \limits _{ - ga - l}^{ - \infty } {\frac{{{e^{b\frac{{y + l}}{g}}}}}{{{{\left( {y + l - cg} \right) }^2}}}\left( {\texttt {C} + \ln \left( { - y} \right) + \sum \limits _{k = 1}^\infty {\frac{{{y^k}}}{{k \cdot k!}}} } \right) dy} \end{aligned} \end{aligned}$$
(86)

By denoting

$$\begin{aligned} {{\mathcal{O}}_1}&= \int \limits _{ - ga - l}^{ - \infty } {\frac{{{e^{\frac{b}{g}y}}}}{{{{\left( {y + l - cg} \right) }^2}}}dy} \end{aligned}$$
(87)
$$\begin{aligned} {{\mathcal{O}}_2}&= \int \limits _{ - ga - l}^{ - \infty } {\frac{{{e^{\frac{b}{g}y}}}}{{{{\left( {y + l - cg} \right) }^2}}}\ln \left( { - y} \right) dy} \end{aligned}$$
(88)
$$\begin{aligned} {{\mathcal{O}}_3}&= {\int \limits _{ - ga - l}^{ - \infty } {\frac{{{y^k}{e^{\frac{b}{g}y}}}}{{{{\left( {y + l - cg} \right) }^2}}}dy} }, \end{aligned}$$
(89)

it is apparent that (86) matches (51). Therefore, in order to complete the proof, we must represent (87), (88), and (89) as (52), (53), and (59), correspondingly.

Starting with \(\mathcal{O}_1\). By performing the variable change, one obtains

$$\begin{aligned} \begin{aligned} {{\mathcal{O}}_1}&= - \int \limits _{ga + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{{{\left( { - x + l - cg} \right) }^2}}}dx} \\&= - {e^{ - \frac{{b\left( {l - cg} \right) }}{g}}}\int \limits _{ga + cg}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{y^2}}}dy}, \end{aligned} \end{aligned}$$
(90)

which coincides with (52) after using (81).

We simplify \({{\mathcal{O}}_2}\) through the variable changes, the series representation of \({\ln \left( x \right) }\), and the binomial expansion as

$$\begin{aligned} \begin{aligned} {{\mathcal{O}}_2} &=- \int \limits _{ga + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{{{\left( { - x + l - cg} \right) }^2}}}\ln \left( x \right) dx} \\ &=- \int \limits _{ga + l}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{{{\left( {x + cg - l} \right) }^2}}}\left[ {2\sum \limits _{k = 1}^\infty {\frac{1}{{2k - 1}}{{\left( {\frac{{x - 1}}{{x + 1}}} \right) }^{2k - 1}}} } \right] dx} \\ &=- \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}} \int \limits _{ga + l}^\infty \frac{{{e^{ - \frac{b}{g}x}}}}{{{{\left( {x + cg - l} \right) }^2}{{\left( {x + 1} \right) }^{2k - 1}}}}\\& \quad \times \left[ {\sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) {x^i}{{\left( { - 1} \right) }^{2k - 1 - i}}} } \right] dx \\ &=- \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}} \sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) } {\left( { - 1} \right) ^{2k - 1 - i}}\int \limits _{ga + l + 1}^\infty {\frac{{{{\left( {y - 1} \right) }^i}{e^{ - \frac{b}{g}\left( {y - 1} \right) }}}}{{{{\left( {y - 1 + cg - l} \right) }^2}{y^{2k - 1}}}}dy} \\ &=- \sum \limits _{k = 1}^\infty {\frac{2}{{2k - 1}}} \sum \limits _{i = 0}^{2k - 1} {\left( {\begin{array}{c} {2k - 1} \\ i \\ \end{array}} \right) } {\left( { - 1} \right) ^{2k - 1 - i}}\int \limits _{ga + l + 1}^\infty \frac{{{e^{ - \frac{b}{g}\left( {y - 1} \right) }}}}{{{{\left( {y - 1 + cg - l} \right) }^2}{y^{2k - 1}}}}\\&\quad \times\left[ {\sum \limits _{j = 0}^i {\left( {\begin{array}{c} i \\ j \\ \end{array}} \right) {y^j}{{\left( { - 1} \right) }^{i - j}}} } \right] dy. \end{aligned} \end{aligned}$$
(91)

By denoting

$$\begin{aligned} {\mathcal{U}}={\int \limits _{ga + l + 1}^\infty {\frac{{{y^j}{e^{ - \frac{b}{g}y}}}}{{{{\left( {y - 1 + cg - l} \right) }^2}{y^{2k - 1}}}}dy} }, \end{aligned}$$
(92)

and after simplification, (91) matches (53).

Therefore, the remaining step for proving \({{\mathcal{O}}_2}\) is to show that (92) is (54). To compute \({\mathcal{U}}\), we consider two cases: \({j = 2k - 1}\) (Case 1) and \({j \ne 2k - 1}\) (Case 2). For Case 1, \({\mathcal{U}}\) becomes \({\int \nolimits _{ga + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{{\left( {y - 1 + cg - l} \right) }^2}}}dy} }\) and after performing the variable change, it reduces to \({\mathcal{U}} = {e^{\frac{b}{g}\left( {cg - l - 1} \right) }}\int \nolimits _{\left( {a + c} \right) g}^\infty {\frac{{{e^{ - \frac{b}{g}x}}}}{{{x^2}}}dx}\), which immediately follows (54) after using (81). For Case 2, we denote

$$\begin{aligned} {\mathcal{U}}={\int \limits _{ga + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{{\left( {y - 1 + cg - l} \right) }^2}{y^{2k - j - 1}}}}dy} }={\mathcal{G}} \end{aligned}$$
(93)

Combining results in two cases shows that (92) becomes (54). Therefore, the next step is to show that \({\mathcal{G}}\) can be represented as (55). To do that, we firstly apply the partial fraction decomposition as

$$\begin{aligned} {\mathcal{G}}&= {} {J_1}\int \limits _{ga + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{y + cg - l - 1}}dy} + {J_2}\int \limits _{ga + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{{\left( {y + cg - l - 1} \right) }^2}}}dy} \nonumber \\&\quad + \sum \limits _{v = 1}^{2k - j - 1} {{L_{2k - j - 1 - v + 1}}\int \limits _{ag + l + 1}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{y^v}}}dy} }, \end{aligned}$$
(94)

where \(J_1\), \(J_2\), and \(L_m\) are defined in (56), (57), and (58), correspondingly.

Then performing the variable changes for the second term in (94) and using (68) and (81), it is straightforward to show that (94) coincides (55).

We simplify \({{\mathcal{O}}_3}\) through the variable changes and the binomial expansion as

$$\begin{aligned} \begin{aligned} {{\mathcal{O}}_3} &= - {\left( { - 1} \right) ^k}\int \limits _{ag + l}^\infty {\frac{{{x^k}{e^{ - \frac{b}{g}x}}}}{{{{\left( {x + cg - l} \right) }^2}}}dx} \\ &={\left( { - 1} \right) ^{k + 1}}\int \limits _{ag + l + cg - l}^\infty {\frac{{{{\left( {y + l - cg} \right) }^k}{e^{ - \frac{b}{g}\left( {y + l - cg} \right) }}}}{{{y^2}}}dy} \\ &={e^{ - \frac{b}{g}\left( {l - cg} \right) }}{\left( { - 1} \right) ^{k + 1}}\int \limits _{\left( {a + c} \right) g}^\infty {\left[ {\sum \limits _{i = 0}^k {\left( {\begin{array}{c} k \\ i \\ \end{array}} \right) } {y^i}{{\left( {l - cg} \right) }^{k - i}}} \right] \frac{{{e^{ - \frac{b}{g}y}}}}{{{y^2}}}dy} \\ &={e^{ - \frac{b}{g}\left( {l - cg} \right) }}{\left( { - 1} \right) ^{k + 1}}\left[ {{{\left( {l - cg} \right) }^k}\int \limits _{\left( {a + c} \right) g}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{{{y^2}}}dy} + {{\left( {l - cg} \right) }^{k - 1}}k\int \limits _{\left( {a + c} \right) g}^\infty {\frac{{{e^{ - \frac{b}{g}y}}}}{y}dy} + } \right. \\&\quad + \left. {\sum \limits _{i = 2}^k {\left( {\begin{array}{c} k \\ i \\ \end{array}} \right) } {{\left( {l - cg} \right) }^{k - i}}\int \limits _{\left( {a + c} \right) g}^\infty {{y^{i - 2}}{e^{ - \frac{b}{g}y}}dy} } \right] \end{aligned} \end{aligned}$$
(95)

Using (81) and (83) reduces (95) to (59), completing the proof.

Appendix 4: Proof of Theorem 2

Inserting \(B_{sdt}\) in (13), \(A_{sd}\) in (12), \(B_{swt}\) in (20), D in (28) and \(A_{sw}\) in (19) into (32), one can simplify (32) as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_2} &={\mathrm{{E}}_{{{\left| {{h_{sr}}} \right| }^2}}}\left\{ {{{\bar{B}}_{sdt}}{P_s}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_s}}}}}{2^{ - {C_0}}}\left( {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_s}}}{{{{\bar{B}}_{swt}}{P_s} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) }}} \right) } \right. \\&\quad \times \left. {\frac{{{\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_s}}} + \frac{1}{{{\lambda _{sw}}{P_s}}},{2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) } \right) }}{{{{\bar{B}}_{swt}}{P_s} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) }}} \right\} \end{aligned} \end{aligned}$$
(96)

Recalling \({P_s} = \min \left( {\frac{{{I_m}}}{{{{\left| {{h_{sr}}} \right| }^2}}},{P_m}} \right) \) to further simplify (96) as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_2} &=\int \limits _0^{\frac{{{I_m}}}{{{P_m}}}} {{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}\left( {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_m}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }}} \right) } \\&\quad \times \frac{{{\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_m}}} + \frac{1}{{{\lambda _{sw}}{P_m}}},{2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) } \right) }}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }}\frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx \\&\quad + \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}}}}{2^{ - {C_0}}}\left( {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x}}}{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) }}} \right) } \\&\quad \times \frac{{{\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}} + \frac{1}{{{\lambda _{sw}}\frac{{{I_m}}}{x}}},{2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) } \right) }}{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) }}\frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx\\ &=\left( {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_m}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }}} \right) \frac{{{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }} \\&\quad \times \left( {1 - {e^{ - \frac{{{I_m}}}{{{P_m}{\lambda _{sr}}}}}}} \right) {\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_m}}} + \frac{1}{{{\lambda _{sw}}{P_m}}},{2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) } \right) \\&\quad + \frac{{{{\bar{B}}_{sdt}}{I_m}{A_{tw}}}}{{\left( {1 - {2^{{C_0}}}} \right) {\lambda _{sr}}}}\int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty \frac{{{e^{ - \left( {\frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{I_m}}} + \frac{1}{{{\lambda _{sr}}}}} \right) x}}}}{{x + \frac{{{{\bar{B}}_{swt}}{I_m} - {2^{ - {C_0}}}{{\bar{B}}_{sdt}}{I_m}}}{{{2^{ - {C_0}}} - 1}}}}\\&\quad \times {\mathcal{V}} \left( {\left[ {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right] \frac{x}{{{I_m}}},{2^{ - {C_0}}}\left( {\frac{{{{\bar{B}}_{sdt}}{I_m}}}{x} + {2^{{C_0}}} - 1} \right) } \right) dx \\&\quad + \frac{{{{\bar{B}}_{sdt}}{{\bar{B}}_{swt}}}}{{{\lambda _{sr}}{2^{{C_0}}}}}{\left( {\frac{{{I_m}}}{{{2^{ - {C_0}}} - 1}}} \right) ^2} \\&\quad\times \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty \frac{{{e^{ - \left( {\frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{I_m}}} + \frac{1}{{{\lambda _{sr}}}}} \right) x}}}}{{{{\left( {x + \frac{{{{\bar{B}}_{swt}}{I_m} - {2^{ - {C_0}}}{{\bar{B}}_{sdt}}{I_m}}}{{{2^{ - {C_0}}} - 1}}} \right) }^2}}}\\&\quad {\mathcal{V}}\left( {\left[ {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right] \frac{x}{{{I_m}}},{2^{ - {C_0}}}\left[ {\frac{{{{\bar{B}}_{sdt}}{I_m}}}{x} + {2^{{C_0}}} - 1} \right] } \right) dx \end{aligned} \end{aligned}$$
(97)

Two integrands in the last equality of (97) are solved in closed-form with the aids of (37) and (49), respectively, reducing (97) to (60) and completing the proof.

Appendix 5: Proof of Theorem 3

Inserting \(B_{sdt}\) in (13), \(A_{sd}\) in (12), \(B_{swt}\) in (20), D in (28) and \(A_{sw}\) in (19) into (33), one can rewrite (33) as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_3} &={\mathrm{{E}}_{{{\left| {{h_{sr}}} \right| }^2}}}\left\{ {\frac{{{{\bar{B}}_{sdt}}{P_s}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_s}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_s} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) }}\left[ {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_s}}}{{{{\bar{B}}_{swt}}{P_s} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_s} + {2^{{C_0}}} - 1} \right) }}} \right. } \right. \\&\quad - \left. {\left. {{{\bar{B}}_{swt}}{P_s}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_s}}} + \frac{1}{{{\lambda _{sw}}{P_s}}}} \right) } \right] {\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_s}}} + \frac{1}{{{\lambda _{sw}}{P_s}}},{{\bar{B}}_{swt}}{P_s}} \right) } \right\} \end{aligned} \end{aligned}$$
(98)

Recalling \({P_s} = \min \left( {\frac{{{I_m}}}{{{{\left| {{h_{sr}}} \right| }^2}}},{P_m}} \right) \) to further simplify (98) as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_3} &=\int \limits _0^{\frac{{{I_m}}}{{{P_m}}}} {\frac{{{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }} } \\& \quad \times \left[ {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_m}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }} - {{\bar{B}}_{swt}}{P_m}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_m}}} + \frac{1}{{{\lambda _{sw}}{P_m}}}} \right) } \right] \\&\quad \times {\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_m}}} + \frac{1}{{{\lambda _{sw}}{P_m}}},{{\bar{B}}_{swt}}{P_m}} \right) \frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx \\&\quad + \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {\frac{{{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) }} } \\&\quad \times \left[ {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x}}}{{{{\bar{B}}_{swt}}\frac{{{I_m}}}{x} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}\frac{{{I_m}}}{x} + {2^{{C_0}}} - 1} \right) }} - {{\bar{B}}_{swt}}\frac{{{I_m}}}{x}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}} + \frac{1}{{{\lambda _{sw}}\frac{{{I_m}}}{x}}}} \right) } \right] \\&\quad \times {\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}\frac{{{I_m}}}{x}}} + \frac{1}{{{\lambda _{sw}}\frac{{{I_m}}}{x}}},{{\bar{B}}_{swt}}\frac{{{I_m}}}{x}} \right) \frac{1}{{{\lambda _{sr}}}}{e^{ - \frac{x}{{{\lambda _{sr}}}}}}dx, \end{aligned} \end{aligned}$$
(99)

which can be rewritten in a compact form as

$$\begin{aligned} \begin{aligned} {{\mathcal{Q}}_3} &=\frac{{{{\bar{B}}_{sdt}}{P_m}{e^{ - \frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{P_m}}}}}{2^{ - {C_0}}}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }} \\&\times \left( {1 - {e^{ - \frac{{{I_m}}}{{{P_m}{\lambda _{sr}}}}}}} \right) {\mathcal{V}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}{P_m}}} + \frac{1}{{{\lambda _{sw}}{P_m}}},{{\bar{B}}_{swt}}{P_m}} \right) \\&\times \left[ {{A_{tw}} + \frac{{{{\bar{B}}_{swt}}{P_m}}}{{{{\bar{B}}_{swt}}{P_m} - {2^{ - {C_0}}}\left( {{{\bar{B}}_{sdt}}{P_m} + {2^{{C_0}}} - 1} \right) }} - {{\bar{B}}_{swt}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right) } \right] \\&+ \frac{{{{\bar{B}}_{sdt}}{I_m}{2^{ - {C_0}}}}}{{\left( {{2^{ - {C_0}}} - 1} \right) {\lambda _{sr}}}}\left[ {{A_{tw}} - {{\bar{B}}_{swt}}\left( {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right) } \right] \\&\times \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {\frac{{{e^{ - \left( {\frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{I_m}}} + \frac{1}{{{\lambda _{sr}}}}} \right) x}}}}{{x + \frac{{{{\bar{B}}_{swt}}{I_m} - {2^{ - {C_0}}}{{\bar{B}}_{sdt}}{I_m}}}{{{2^{ - {C_0}}} - 1}}}}{\mathcal{V}}\left( {\left[ {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right] \frac{x}{{{I_m}}},\frac{{{{\bar{B}}_{swt}}{I_m}}}{x}} \right) dx} \\&+ \frac{{{2^{{C_0}}}{{\bar{B}}_{swt}}{{\bar{B}}_{sdt}}}}{{{\lambda _{sr}}}}{\left( {\frac{{{I_m}}}{{1 - {2^{{C_0}}}}}} \right) ^2} \\&\times \int \limits _{\frac{{{I_m}}}{{{P_m}}}}^\infty {\frac{{{e^{ - \left( {\frac{{{2^{{C_0}}} - 1}}{{{\lambda _{sd}}{I_m}}} + \frac{1}{{{\lambda _{sr}}}}} \right) x}}}}{{{{\left( {x + \frac{{{{\bar{B}}_{swt}}{I_m} - {2^{ - {C_0}}}{{\bar{B}}_{sdt}}{I_m}}}{{{2^{ - {C_0}}} - 1}}} \right) }^2}}}{\mathcal{V}}\left( {\left[ {\frac{{{2^{{C_0}}}}}{{{\lambda _{sd}}}} + \frac{1}{{{\lambda _{sw}}}}} \right] \frac{x}{{{I_m}}},\frac{{{{\bar{B}}_{swt}}{I_m}}}{x}} \right) dx} \end{aligned} \end{aligned}$$
(100)

Two integrands in the last equality of (100) are solved in closed-form with the aids of (61) and (62), respectively, reducing (100) to (63) and completing the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Van, K., Do-Dac, T. Impact of Primary Interference on Secrecy Performance of Physical Layer Security in Cognitive Radio Networks. Wireless Pers Commun 100, 1099–1127 (2018). https://doi.org/10.1007/s11277-018-5623-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5623-7

Keywords

Navigation