Skip to main content
Log in

Adaptive Modulation and Coding with Selective Retransmission under OFDM signaling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we present bandwidth efficient selective retransmission method in conjunction with adaptive modulation and coding (AMC) scheme for OFDM waveform. In the proposed method, when a packet failure occurs, receiver requests retransmission of information symbols prone to error corresponding to the low signal-to-noise ratio (SNR) sub-carriers of OFDM modulation. The selective retransmission avoids unnecessary retransmission and AMC chooses a proper modulation and coding scheme with an objective to maximize the throughput. Our method achieves higher throughput as compared to conventional retransmission methods such as Chase combining hybrid automatic repeat reQuest (CC-HARQ) and incremental redundancy hybrid automatic repeat reQuest (IR-HARQ). We also provide the throughput and delay analysis of the proposed method for non-truncated ARQ. The simulation results demonstrate throughput gain without significant impact on delay as compared to the conventional retransmission approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu, P. S., & Lin, S. (1981). An efficient selective-repeat ARQ scheme for satellite channels and its throughput analysis. IEEE Transactions on Communications, 29(3), 353–363.

    Article  Google Scholar 

  2. Huang, C.-Y., Chung, W.-C., Chang, C.-J., & Ren, F.-C. (2011). An intelligent HARQ scheme for HSDPA. IEEE Transactions on Vehicular Technology, 60(4), 1602–1611.

    Article  Google Scholar 

  3. Cipriano, A. M., Gagneur, P., Vivier, G., & Sezginer, S. (2010). Overview of ARQ and HARQ in beyond 3G systems. In IEEE 21st international symposium on personal, indoor and mobile radio communications workshops (PIMRC Workshops) (pp. 424–429). IEEE.

  4. Hu, T., Afshartous, D., & Young, G. (2004). Parallel stop and wait ARQ in UMTS-Performance and modeling. In Proceedings of the 2004 world wireless congress, San Francisco, CA.

  5. Lin, S., & Yu, P. S. (1982). A hybrid ARQ scheme with parity retransmission for error control of satellite channels. IEEE Transactions on Communications, 30(7), 1701–1719.

    Article  MATH  Google Scholar 

  6. Long Term Evolution of the 3GPP Radio Technology. Available http://www.3gpp.org. Accessed July 15, 2015

  7. Chase, D. (1985). Code combining—A maximum-likelihood decoding approach for combining an arbitrary number of noisy packets. IEEE Transactions on Communications, 33(5), 385–393.

    Article  MathSciNet  Google Scholar 

  8. Introduction 2 hybrid ARQ—3gpp r1-01-0031, Available: http://www.3gpp.org. Accessed December 10, 2016

  9. Alouni, M. S., & Goldsmith, A. J. (2000). Adaptive modulation over Nakagami fading channels. Wireless Personal Communications, 13(1), 119–143.

    Article  Google Scholar 

  10. Webb, W., & Steele, R. (1995). Variable rate QAM for mobile radio. IEEE Transactions on Communications, 43(7), 2223–2230.

    Article  Google Scholar 

  11. Fantacci, R., Marabissi, D., Tarchi, D., & Habib, I. (2009). Adaptive modulation and coding techniques for OFDMA systems. IEEE Transactions on Wireless Communications, 8(9), 4876–4883.

    Article  Google Scholar 

  12. Goldsmith, A. J., & Chua, S.-G. (1998). Adaptive coded modulation for fading channels. IEEE Transactions on Communications, 46(5), 595–602.

    Article  Google Scholar 

  13. Goldsmith, A. J., & Varaiya, P. P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zia, M., & Ding, Z. (2014). Bandwidth efficient variable rate HARQ under orthogonal space–time block codes. IEEE Transactions on Signal Processing, 62(13), 3360–3390.

    Article  MathSciNet  Google Scholar 

  15. Roberson, J., Dong, X., & Ding, Z. (2007). Channel estimation and equalization techniques in downsampled ARQ systems. IEEE Transactions on Signal Processing, 55(5), 2251–2262.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zia, M., & Ding, Z. (2008). Joint ARQ receiver design for bandwidth efficient MIMO systems. In Proceedings of the IEEE global telecommunications conference, New Orleans, LA, USA (pp. 1–5).

  17. Shi, T., & Cao, L. (2004). Combining techniques and segment selective repeat on turbo coded hybrid ARQ. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (Vol. 4, pp. 2115–2119).

  18. Muhammad, Z., Mahmood, H., Ahmed, A., Saqib, N., et al. (2013). Selective HARQ transceiver design for OFDM system. IEEE Communications Letters, 17(12), 2229–2232.

    Article  Google Scholar 

  19. Shafique, T., Zia, M., Han, H. D., & Mahmood, H. (2016). Cross-layer Chase combining with selective retransmission, analysis, and throughput optimization for OFDM systems. IEEE Transactions on Communications, 64(6), 2311–2325.

    Article  Google Scholar 

  20. Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.

    Article  Google Scholar 

  21. Wu, D., & Ci, S. (2006). Cross-layer design for combining adaptive modulation and coding with hybrid ARQ. In Proceedings of the 2006 international conference on wireless communications and mobile computing (pp. 147–152).

  22. Sassioui, R., Jabi, M., Szczecinski, L., & Benjillali, M. (2016). HARQ and AMC: Friends or foes? IEEE Transactions on Communications, 65(2), 635–650.

    Article  Google Scholar 

  23. Jabi, M., Benjillali, M., Szczecinski, L., & Labeau, F. (2016). Energy efficiency of adaptive HARQ. IEEE Transactions on Communications, 64(2), 818–831.

    Article  Google Scholar 

  24. Zia, M., Kiani, T., Saqib, N. A., Shah, T., & Mahmood, H. (2015). Bandwidth-efficient selective retransmission for MIMO-OFDM systems. ETRI Journal, 37(1), 66–76.

    Article  Google Scholar 

  25. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  26. Bromwich, T. J. I. (1908). An introduction to the theory of infinite series. Basingstoke: Macmillan and Company Limited.

    MATH  Google Scholar 

  27. Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4(3), 1142–1153.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the URF grant No.FNS/16-1724 of Quaid-i-Azam University, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadri, M.I., Zia, M. Adaptive Modulation and Coding with Selective Retransmission under OFDM signaling. Wireless Pers Commun 101, 1787–1805 (2018). https://doi.org/10.1007/s11277-018-5672-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5672-y

Keywords

Navigation