Skip to main content
Log in

A Performance Enhancement and High Speed Spectrum Sliced Free Space Optical System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A cost effective Kerr nonlinearity based spectrum sliced (SS) WDM free space optical communication system is demonstrated under different weather instabilities. The investigated supercontinuum spectrum sliced WDM FSO system is evaluated at 2.5 Gbps up to 5 km of link distance. A highly nonlinear fiber is a channel for the generation of high power broad spectrum for spectrum slicing. A dense SS-WDM is investigated at 75 GHz channel spacing among 4 channels to make system bandwidth efficient. The system is investigated for different line coding (return to zero, non return to zero) and advanced modulation format such as compressed spectrum return to zero. A major degrading factor in free space communication i.e. beam divergence is also analyzed for investigated work. Antenna diameters of receiver and transmitter play a vital role in FSO, thus various diameters performances are also studied. The approach is to cater the high-speed data demands and thus system deliberated and demonstrated from 2.5 to 10 Gbps. To strengthen the signal in this FSO system, three optical amplifiers are scrutinized such as erbium doped fiber amplifier (EDFA), semiconductor optical amplifier (SOA) and Raman amplifier in terms of bit error rate and quality factor. Results revealed that EDFA is the best amplifier in investigated SS-WDM-FSO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bouchet, O., Sizun, H., Boisrobert, C., de Fornel, F., and Favennec, P. N. (2010). Free space optics: Propagation and communication (pp. 1–219), Wiley—ISTE. ISBN: 978-0-470-39441-0.

  2. He, J., Norwood, R. A., Pearce, M. B., Djordjevic, I. B., et al. (2014). A survey on recent advances in optical communications. Computers & Electrical Engineering, 40, 216–240.

    Article  Google Scholar 

  3. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communication Surveys & Tutorials, 16, 2231–2258.

    Article  Google Scholar 

  4. Kazaura, K., Omae, K., Suzuki, T., et al. (2006). Experimental demonstration of next-generation FSO communication system. Optics East. Int’1. Society of Photo Optical Instrumentation Engineers (SPIE), 6390, 63900–63912.

    Google Scholar 

  5. Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik - International Journal for Light and Electron Optics, 125, 5196–5198.

    Article  Google Scholar 

  6. Liu, W., Shi, W., Cao, J., Lv, Y., et al. (2014). Bit error rate analysis with real-time pointing errors correction in free space optical communication systems. Optik – International Journal for Light and Electron Optics, 125, 324–328.

    Article  Google Scholar 

  7. Gappmair, W., Flohberger, M., et al. (2009). Error performance of coded FSO links in turbulent atmosphere modeled by Gamma–Gamma distribution. IEEE Transactions on Wireless Communications, 8, 2209–2213.

    Article  Google Scholar 

  8. Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., et al. (2009). 1.28 Terabit/s (32 × 40 Gbit/s) WDM transmission system for free space optical communications. IEEE Journal on Selected Areas in Communications, 27, 1639–1645.

    Article  Google Scholar 

  9. Gupta, A., Bakshi, S., & Nagpal, S. (2017). Digital signal processing of 400 Gbps CO-QPSK-WDM system over optical wireless channel for carrier phase estimation. Springer—Wireless Personal Communications. https://doi.org/10.1007/s11277-017-5042-1.

  10. Rashidia, F., He, J., & Chen, L. (2017). Spectrum slicing WDM for FSO communication systems under the heavy rain weather. Optics Communications, 387, 296–302.

    Article  Google Scholar 

  11. Pendock, G. J., & Sampson, D. D. (1996). Transmission performance of high bit rate spectrum sliced WDM systems. Journal of Light Wave Technology, 14, 2141–2148.

    Article  Google Scholar 

  12. Lee, K., Lim, S. D., Jhon, Y. M., Kim, C. H., et al. (2012). Broadcasting in colorless WDM-PON using spectrum-sliced wavelength conversion. Optical Fiber Technology, 18, 112–116.

    Article  Google Scholar 

  13. Kaneko, S., Kani, J.-I., Iwatsuki, K., Ohki, A., et al. (2006). Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction. Journal of Light Wave Technology, 24, 1295–1301.

    Article  Google Scholar 

  14. Thakur, A., Nagpal, S., & A. Gupta. (2018). Kerr effect based spectrum sliced wavelength division multiplexing for free space optical communication. Optik - International journal for light and electron optics, 157, 31–37.

    Article  Google Scholar 

  15. Kaneko, S., Kani, J.-I., Iwatsuki, K., Ohki, A., et al. (2006). Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction. Journal of Lightwave Technology, 24, 1295–1301.

    Article  Google Scholar 

  16. Koshy, A. S., & Babu, J. S. (2016). Impact of erbium doped fiber amplifier on WDM-FSO system under rain attenuations. International Journal of Advanced Research in Electrical Electronics and Instrumentation Engineering, 5, 867–872.

    Google Scholar 

  17. Kaushal, H., Kaddoum, G., Jain, V. K., & Kar, S. (2017). Experimental investigation of optimum beam size for FSO uplink. Optics Communications, 400, 106–114.

    Article  Google Scholar 

  18. Abtahi, M., & Rusch, L. A. (2017). Mitigating of scintillation noise in FSO communication links using saturated optical amplifiers. In Centre for Optics, Photonic and Laser (COPL) (pp. 3181–3185).

  19. Thakur, A., & Nagpal, S. (2017). Performance evaluation of different optical amplifiers in spectrum sliced free space optical link. De–Gruyter, Journal of Optical Communications (JOC), JOC.2017.0120.

  20. Fadhil, H. A., Amphawan, A., Shamsuddin, H. A. B., Hussein, T., et al. (2013). Optimization of free space optics parameters: An optimum solution for bad weather conditions. Optik International Journal for Light and Electron Optics, 124, 3969–3973.

    Article  Google Scholar 

  21. Kim, I. I., McArthur, B., & Korevaar, E. J. (2000). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Optical Wireless Communication III, Society of Photo Optical Instrumentation Engineers (SPIC), 4214, 26–37.

    Google Scholar 

  22. Chaudhary, S., Bansal, P., & Singh, G. (2013). Implementation of FSO under the Impact of Atmospheric Turbulences. International Journal of Computer Applications, 75, 34–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Thakur.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Nagpal, S. & Gupta, A. A Performance Enhancement and High Speed Spectrum Sliced Free Space Optical System. Wireless Pers Commun 100, 1775–1789 (2018). https://doi.org/10.1007/s11277-018-5674-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5674-9

Keywords

Navigation