Skip to main content
Log in

Effects of Atmospheric Impairments of Satellite Link Operating in Ka Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Over the past decades, satellites have been used to provide a variety of services like voice, data, negation and video. Frequencies above 10 GHz provide new opportunities to meet high bandwidth demands especially for small, maritime, areal and mobile land platforms in order to support beyond line of sight requirements for network centric operations. This is possible due to availability of 1 GHz and more bandwidth. This article discusses about attenuation caused by various atmospheric impairments like rain, cloud, fog, dust etc. at Ka band satellite communications. A new cloud model has been also proposed with comparison of ITU model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christensen, J. (2012). ITU regulations for ka band satellite networks. In 30th AIAA international communication satellite conference (ICSSC) (p. 15179).

  2. Calla, O. P. N., & Purohit, J. S. (1990). Study of effect of rain and dust on propagation of radio waves at millimeter wavelength. In Proceedings of the URSI’90 (pp. 151–155).

  3. Van de Kamp, M. M. J. L. (2003). Statistical analysis of rain fade slope. IEEE Transactions on Antennas and Propagation, 51(8), 1750–1759.

    Article  Google Scholar 

  4. Capsoni, C., et al. (2009). A new prediction model of rain attenuation that separately accounts for stratiform and convective rain. IEEE Transactions on Antennas and Propagation, 57(1), 196–204.

    Article  Google Scholar 

  5. Das, S., Maitra, A., & Shukla, A. K. (2010). Rain attenuation modeling in the 10–100 GHz frequency using drop size distributions for different climatic zones in tropical India. Progress in Electromagnetics Research B, 25, 211–224.

    Article  Google Scholar 

  6. Albendag, A. A. M., & Zain, A. F. M. (2014). Modification of earth-space rain attenuation model for earth-space link. IOSR-JECE, 9(2), 63–67.

    Article  Google Scholar 

  7. Papatsoris, A. D. (1997). Effect of ice clouds on millimetre-wave aeronautical and satellite communications. Electronics Letters, 33(21), 1766–1768.

    Article  Google Scholar 

  8. Dissanayake, A., Allnutt, J., & Haidara, F. (2001). Cloud attenuation modelling for SHF and EHF applications. International Journal of Satellite Communications and Networking, 19(3), 335–345.

    Article  Google Scholar 

  9. Sarkar, S. K., Ahmad, I., & Gupta, M. M. (2005). Statistical morphology of cloud occurrences and cloud attenuation over Hyderabad, India. Indian Journal of Radio and space Physics, 34, 119–124.

    Google Scholar 

  10. Kumar, A., & Sarkar, S. K. (2007). Cloud attenuation and cloud noise temperature over some Indian eastern stations for satellite communication. Indian Journal of Radio & Space Physics, 36, 375–378.

    Google Scholar 

  11. Omotosho, T. V., & Babatunde, E. B. (2010). Study of cloud impact on fixed satellite communication link at Ku, Ka and V Bands in Nigeria. Australian Journal of Basic and Applied Sciences, 4(8), 3287–3298.

    Google Scholar 

  12. Mandeep, J. S., & Hassan, S. I. S. (2008). Cloud attenuation for satellite applications over equatorial climate. IEEE Antennas and Wireless Propagation Letters, 7, 152–154.

    Article  Google Scholar 

  13. Maitra, A., & Chakraborty, S. (2009). Cloud liquid water content and cloud attenuation studies with radiosonde data at a tropical location. Journal of Infrared, Millimeter, and Terahertz Waves, 30(4), 367–373.

    Article  Google Scholar 

  14. Mattioli, V., et al. (2009). Analysis and improvements of cloud models for propagation studies. Radio Science, 44, RS2005.

    Article  Google Scholar 

  15. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2014). Cloud attenuation studies of the six major climatic zones of Africa for Ka and V satellite system design. Annals of Geophysics, 56(5), 0568.

    Google Scholar 

  16. Tamosiunas, S., et al. (2009). The influence of fog on the propagation of the electromagnetic waves under Lithuanian climate conditions. PIERS Online, 5(6), 576–580.

    Google Scholar 

  17. Omotosho, T. V., Mandeep, J. S., & Abdullah, M. (2011). Atmospheric gas impact on fixed satellite communication link a study of its effects at Ku, Ka and V bands in Nigeria. In 2011 IEEE International conference on space science and communication (IconSpace). IEEE.

  18. Harb, K., et al. (2012). A proposed method for dust and sand storms effect on satellite communication networks. In Innovations on communication theory INCT, (Istanbul, Turkey) (pp. 33–37).

  19. Harb, K., et al. (2013). Systems adaptation for satellite signal under dust, sand and gaseous attenuations. Journal of Wireless Networking and Communications, 3(3), 39–49.

    Google Scholar 

  20. Harb, K., et al. (2015). Ka-band VSAT system models under measured DUSA attenuation. In SPACOMM, the seventh international conference in advances in satellite and space communications.

  21. Hossain, S. M., & Samad, A. M. (2015). The tropospheric scintillation prediction of earth-to-satellite link for Bangladeshi climatic condition. Serbian Journal of Electrical Engineering, 12(3), 263–273.

    Article  Google Scholar 

  22. Del Pino, P. G., et al. (2008). Tropospheric scintillation measurements on a Ka-band satellite link in Madrid. In URSI.

  23. van de Kamp, M. M., et al. (1999). Improved models for long-term prediction of tropospheric scintillation on slant paths. IEEE Transactions on Antennas and Propagation, 47(2), 249–260.

    Article  Google Scholar 

  24. Hussein, M. A. (2009). Scintillation effects on satellite communications within standard atmosphere. Anbar Journal of Engineering Sciences, 2(2), 17–27.

    Google Scholar 

  25. Mager, C. E. (2002). Evaluation of 8 scintillation models. In Proceddings of the URSI general assembly.

  26. Acosta, R. J. (2009). Special effects: Antenna wetting, short distance diversity and depolarization. Online Journal of Space Communications, 2, 1.

    Google Scholar 

  27. Mandeep, J. S. (2009). Analysis effect of water on a Ka and antenna. Progress in Electromagnetics Research Letters, 9, 49–57.

    Article  Google Scholar 

  28. Rafiqul, I. M., Elshaikh, Z. E. O., Khalifa, O. O., Zahirul Alam, A. H. M., Khan, S., & Naji, A. W. (2010). Prediction of signal attenuation due to duststorms using Mie scattering. IIUM Engineering Journal, 11(1), 71–87.

    Google Scholar 

  29. Rogers, R. (1976). Statistical rainstorm models: Their theoretical and physical foundations. IEEE Transactions on Antennas and Propagation, 24(4), 547–566.

    Article  Google Scholar 

  30. Olsen, R. O. G. E. R. S., Rogers, D. V., & Hodge, D. (1978). The aR b relation in the calculation of rain attenuation. IEEE Transactions on Antennas and Propagation, 26(2), 318–329.

    Article  Google Scholar 

  31. Oguchi, T. (1983). Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proceedings of the IEEE, 71(9), 1029–1078.

    Article  Google Scholar 

  32. Goldhirsh, J. (2001). Attenuation and backscatter from a derived two-dimensional duststorm model. IEEE Transactions on Antennas and Propagation, 49(12), 1703–1711.

    Article  Google Scholar 

  33. David, N., Alpert, P., & Messer, H. (2013). The potential of commercial microwave networks to monitor dense fog-feasibility study. Journal of Geophysical Research: Atmospheres, 118(20), 750–761.

    Google Scholar 

  34. Recommendation ITU-R P.840-5. (2012). Attenuation due to clouds and fog, P series radio wave propagation.

Download references

Acknowledgements

This work was supported by the contract No. DN 07/19 15.12.2016 “Methods for Estimation and Optimizing Electromagnetic Emissions in Urban Areas”, funded by the National fund for scientific research, Bulgaria, 2016–2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Bonev, B. & Chandra, A. Effects of Atmospheric Impairments of Satellite Link Operating in Ka Band. Wireless Pers Commun 101, 425–437 (2018). https://doi.org/10.1007/s11277-018-5697-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5697-2

Keywords

Navigation