Skip to main content
Log in

Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Visible light communication (VLC) is suitable and natural candidate for vehicular communication. This paper presents the vehicle to vehicle communication system based on VLC technology utilizing light emitting diodes (LEDs) as a transmitter and photodiode as a receiver. The LEDs are present everywhere in outdoor and vehicles utilizing those for communication. Vehicular ad hoc networks are facilitated by empowering enormous applications to require both proficient and reliable data delivery. Low-latency, simple and cost-effective system is designed with less complexity and high consistency by employing off-the-shelf LEDs and photodiodes which mitigates the implementation of complex protocols of typical wireless communication systems. The signal is transmitted from one vehicle that will be received by another vehicle to make sensible steps and to maintain strategic distance to avoid accidents. In this paper, the performance analysis of VLC based vehicle to vehicle communication (V2V) is presented. The results show that 3.5 Mbps and 500 kbps of data rates have been achieved over the distance of 0.5 and 15 m respectively. Amplitude shift keying, frequency shift keying (FSK) and phase shift keying schemes are tested with non-return-zero coding scheme. Bit error rate, received optical power and received signal voltages are measured and analyzed in this paper for V2V communication. The FSK modulation is an efficient technique for long distance as it has lower losses compared to other techniques. Warning messages are displayed on liquid crystal display. The prototype is evaluated experimentally over the distance of 15 m using an array of LEDs to reduce the chances of accidents. Bit error rate of 10−11 for FSK modulation has been achieved with the signal to noise ratio value of 13 dB in this work. The results confirmed the performance of the proposed system and presented that VLC is a feasible technology for vehicular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization. (2013). Global status report on road safety: Supporting a decade of action. Geneva: World Health Organization.

    Google Scholar 

  2. World Health Organization. (2009). Global status report on road safety: Time for action. Geneva: World Health Organization.

    Google Scholar 

  3. Rodrigue, J. P. (2013). Urban transport problems. In The geography of transport systems (3rd edn., pp. 212–219). New York: Routledge

  4. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107.

    Article  Google Scholar 

  5. Tanaka, Y., Komine, T., Haruyama, S., & Nakagawa, M. (2003). Indoor visible light data transmission system utilizing white LED lights. IEICE Transactions on Communications, 86(8), 2440–2454.

    Google Scholar 

  6. Cahyadi, W. A., Kim, Y. H., Chung, Y. H., & Ghassemlooy, Z. (2015). Efficient road surface detection using visible light communication. In Seventh international conference on ubiquitous and future networks (ICUFN) (pp. 61–63). IEEE.

  7. Kim, Y. H., Jeong, T. I., & Chung, Y. H. (2015). Rear-end collision and blind spot reduced autonomous vehicles using sensors and cameras. Sensor Letters, 13(8), 646–649.

    Article  Google Scholar 

  8. Kim, D. R., Yang, S. H., Kim, H. S., Son, Y. H., & Han, S. K. (2012). Outdoor visible light communication for inter-vehicle communication using controller area network. In Fourth international conference on communications and electronics (ICCE) (pp. 31–34). IEEE.

  9. Morgan, Y. L. (2010). Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 12(4), 504–518.

    Article  Google Scholar 

  10. Weidel, E. (2006). U.S. Patent No. 7,150,552. Washington, DC: U.S. Patent and Trademark Office.

  11. Pisek, E., Rajagopal, S., & Abu-Surra, S. (2012). Gigabit rate mobile connectivity through visible light communication. In International conference on communications (ICC) (pp. 3122–3127). IEEE.

  12. Yu, S. H., Shih, O., Tsai, H. M., Wisitpongphan, N., & Roberts, R. D. (2013). Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12), 50–59.

    Article  Google Scholar 

  13. Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2014). Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7), 88–97.

    Article  Google Scholar 

  14. Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., & Menouar, H. (2015). Visible light communication for vehicular networking: Performance study of a V2V system using a measured headlamp beam pattern model. IEEE Vehicular Technology Magazine, 10(4), 45–53.

    Article  Google Scholar 

  15. Ferraz, P. A. P., & Santos, I. S. (2015). Visible light communication applied on vehicle-to-vehicle networks. In International conference on mechatronics, electronics and automotive engineering (ICMEAE) (pp. 231–235). IEEE.

  16. Al Abdulsalam, N., Al Hajri, R., Al Abri, Z., Al Lawati, Z., & Bait-Suwailam, M. M. (2015). Design and implementation of a vehicle to vehicle communication system using Li-Fi technology. In International conference on information and communication technology research (ICTRC) (pp. 136–139). IEEE.

  17. Khairi, D., & Berqia, A. (2015). Li-Fi the future of vehicular ad hoc networks. Transactions on Networks and Communications, 3(3), 31.

    Google Scholar 

  18. Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 8th International symposium on communication systems networks & digital signal processing (CSNDSP) (pp. 1–6). Poznan.

  19. LAN/MAN Standards Committee of the IEEE Computer Society. (2010). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications Amendment 6: Wireless access in vehicular environments. In IEEE standards (Vol. 802, pp. 1–51).

  20. Sasaki, N., Iijima, N., & Uchiyama, D. (2015). Development of ranging method for inter-vehicle distance using visible light communication and image processing. In 15th International conference on control, automation and systems (ICCAS) (pp. 666–670). IEEE.

  21. You, S. H., Chang, S. H., Lin, H. M., & Tsai, H. M. (2013). Visible light communications for scooter safety. In Proceeding of the 11th annual international conference on mobile systems, applications, and services (pp. 509–510). ACM.

  22. Kim, Y. H., Cahyadi, W. A., & Chung, Y. H. (2015). Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photonics Journal, 7(6), 1–9.

    Article  Google Scholar 

  23. Cailean, A., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Blosseville, J. M. (2012). Visible light communications: Application to cooperation between vehicles and road infrastructures. In Intelligent vehicles symposium (IV) (pp. 1055–1059). IEEE.

  24. Cailean, A. M., Cagneau, B., Chassagne, L., Topsu, S., Alayli, Y., & Dimian, M. (2013). Visible light communications cooperative architecture for the intelligent transportation system. In 20th Symposium on communications and vehicular technology in the Benelux (SCVT) (pp. 1–5). IEEE.

  25. Yoo, J. H., Jang, J. S., Kwon, J. K., Kim, H. C., Song, D. W., & Jung, S. Y. (2016). Demonstration of vehicular visible light communication based on LED headlamp. International Journal of Automotive Technology, 17(2), 347–352.

    Article  Google Scholar 

  26. Béchadergue, B., Chassagne, L., & Guan, H. (2017). Experimental comparison of pulse-amplitude and spatial modulations for vehicle-to-vehicle visible light communication in platoon configurations. Optics Express, 25(20), 24790–24802.

    Article  Google Scholar 

  27. Prabhu, T. N., Adharsh, M., Ashok, K. M., Gokul, K. M., & Dhayanithi, G. (2017). Vehicle to vehicle communication using light fidelity. International Journal of Computer Applications, 164(2), 5–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Ahmed Dahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahri, F.A., Mangrio, H.B., Baqai, A. et al. Experimental Evaluation of Intelligent Transport System with VLC Vehicle-to-Vehicle Communication. Wireless Pers Commun 106, 1885–1896 (2019). https://doi.org/10.1007/s11277-018-5727-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5727-0

Keywords

Navigation