Skip to main content
Log in

An Investigation of Massive Gain in Hybrid Configurable Cylindrical Dielectric Resonator Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article a high gain of two layer cylindrical dielectric resonator antenna fed through coaxial probe is projected and developed and conjointly offer complete implementation of superstrate dielectric resonator antenna on patch. The hybrid structure is operated under controlled electric field and magnetic field. The design is loaded with superstrate. The results on reflection coefficient S11, Gain of assorted stages of antenna design are simulated victimisation high frequency structured simulator and conferred. High permittivity material is used as a fluid inside the cylindrical resonator. The resonant frequency of the antenna can be modified by ever-changing the dielectric constant of fluid. It has been investigated that use of superstrate increases antenna gain from by varied biasing voltage reconfigurability are often obtained. The measured gain found to be 11dBi. Reconfigurability is the key parameter during this work a completely unique cylindrical stacked dielectric resonator antenna of high gain with band is presented for Wi-Fi, Wi-max and WLAN communications. The concept becomes compatible with patch antennas for high Gain applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Petosa, A. (2007). Dielectric resonator antenna handbook. Norwood: Artech House Inc.

    Google Scholar 

  2. Guha, D., Banerjee, A., & Antar, Y. M. M. (2010). New radiating mode in a cylindrical DRA to produce broadside high gain radiation. In Antennas and propagation society international symposium (APSURSI), 2010 IEEE, IEEE.

  3. Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.

    Article  Google Scholar 

  4. Chang, T.-H., & Kiang, J.-F. (2009). Bandwidth broadening of dielectric resonator antenna by merging adjacent bands. IEEE Transactions on Antennas and Propagation, 57(10), 3316–3320.

    Article  Google Scholar 

  5. Petosa, A., et al. (1998). Recent advances in dielectric-resonator antenna technology. IEEE Antennas and Propagation Magazine, 40(3), 35–48.

    Article  Google Scholar 

  6. Kishk, A. A., Zunoubi, M. R., & Kajfez, D. (1993). A numerical study of a dielectric disk antenna above grounded dielectric substrate. IEEE Transactions on Antennas and Propagation, 41(6), 813–821.

    Article  Google Scholar 

  7. Long, S., McAllister, M., & Shen, L. (1983). The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation, 31(3), 406–412.

    Article  Google Scholar 

  8. Kranenburg, R. A., & Long, S. A. (1988). Microstrip transmission line excitation of dielectric resonator antennas. Electronics Letters, 24(18), 1156–1157.

    Article  Google Scholar 

  9. Leung, K. W., et al. (1997). Low-profile circular disk DR antenna of very high permittivity excited by a microstripline. Electronics Letters, 33(12), 1004–1005.

    Article  Google Scholar 

  10. Petosa, A., et al. (1995). Design of microstrip-fed series array of dielectric resonator antennas. Electronics Letters, 31(16), 1306–1307.

    Article  Google Scholar 

  11. Kranenburg, R. A., Long, S. A., & Williams, J. T. (1991). Coplanar waveguide excitation of dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 39(1), 119–122.

    Article  Google Scholar 

  12. Martin, J. T. H. St, et al. (1990). Dielectric resonator antenna using aperture coupling. Electronics Letters, 26(24), 2015–2016.

    Article  Google Scholar 

  13. Kishk, A. A., et al. (1995). Slot excitation of the dielectric disk radiator. IEEE Transactions on Antennas and Propagation, 43(2), 198–201.

    Article  MathSciNet  Google Scholar 

  14. Leung, K. W., et al. (1993). Input impedance of aperture coupled hemispherical dielectric resonator antenna. Electronics Letters, 29(13), 1165–1167.

    Article  Google Scholar 

  15. Leung, K. W., et al. (2002). High-permittivity dielectric resonator antenna excited by a rectangular waveguide. Microwave and Optical Technology Letters, 34(3), 157–158.

    Article  Google Scholar 

  16. Eshrah, I. A., et al. (2005). Excitation of dielectric resonator antennas by a waveguide probe: Modeling technique and wide-band design. IEEE Transactions on Antennas and Propagation, 53(3), 1028–1037.

    Article  Google Scholar 

  17. Eshrah, I. A., et al. (2005). Theory and implementation of dielectric resonator antenna excited by a waveguide slot. IEEE Transactions on Antennas and Propagation, 53(1), 483–494.

    Article  Google Scholar 

  18. Kishk, A. A., Ahn, B., & Kajfez, D. (1989). Broadband stacked dielectric resonator antennas. Electronics Letters, 25(18), 1232–1233.

    Article  Google Scholar 

  19. Fan, Z., & Antar, Y. M. M. (1997). Slot-coupled DR antenna for dual-frequency operation. IEEE Transactions on Antennas and Propagation, 45(2), 306–308.

    Article  Google Scholar 

  20. Sangiovanni, A., Dauvignac, J. Y., & Pichot, C. (1998). Stacked dielectric resonator antenna for multifrequency operation. Microwave and Optical Technology Letters, 18(4), 303–306.

    Article  Google Scholar 

  21. Marqués, R., Mesa, F., & Medina, F. (2003). Theory of magnetoelectric multiconductor transmission lines with application to chiral and gyrotropic lines. Microwave and Optical Technology Letters, 38(1), 3–9.

    Article  Google Scholar 

  22. Sung, Y., Ahn, C. S., & Kim, Y.-S. (2004). Microstripline fed dual-frequency dielectric resonator antenna. Microwave and Optical Technology Letters, 42(5), 388–390.

    Article  Google Scholar 

  23. Singh, M., et al. (2016). Design of rectangular dielectric resonator antenna using offset micro-strip feed for satellite application. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.

  24. Paul, B., et al. (2004). A compact very-high-permittivity dielectric-eye resonator antenna for multiband wireless applications. Microwave and Optical Technology Letters, 43(2), 118–121.

    Article  MathSciNet  Google Scholar 

  25. Rao, Q. (2004). Hybrid dielectric resonator antennas with radiating slot for dual-frequency operation. IEEE Antennas and Wireless Propagation Letters, 3(1), 321–323.

    MathSciNet  Google Scholar 

  26. Singh, S., Singh, P., & Singh, M. (2016). Design and advances of cylindrical dielectric resonator antenna—A review. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.

  27. Rao, Q., Denidni, T. A., & Sebak, A. R. (2005). A hybrid resonator antenna suitable for wireless communication applications at 1.9 and 2.45 GHz. IEEE Antennas and Wireless Propagation Letters, 4(1), 341–343.

    Google Scholar 

  28. Gautam, A. K., & Singh, M. (2016). Design of gain enhanced stacked rectangular dielectric resonator antenna for C-band applications. In 2016 3rd International conference on computing for sustainable global development (INDIACom), IEEE.

  29. Rao, Q., et al. (2006). Compact independent dual-band hybrid resonator antenna with multifunctional beams. IEEE Antennas and Wireless Propagation Letters, 5(1), 239–242.

    Article  MathSciNet  Google Scholar 

  30. Lin, Y.-F., et al. (2006). A miniature dielectric loaded monopole antenna for 2.4/5 GHz WLAN applications. IEEE Microwave and Wireless Components Letters, 16(11), 591–593.

    Article  Google Scholar 

  31. Singh, M., et al. (2017). An investigation of resonant modes in rectangular dielectric resonator antenna using transcendental equation. Wireless Personal Communications, 95(3), 2549–2559.

    Article  Google Scholar 

  32. Singh, M., Yaduvanshi, R. S., & Vaish, A. (2015). Design for enhancing gain in multimodal cylindrical dielectric resonator antenna. In India conference (INDICON), 2015 Annual IEEE, IEEE.

  33. Yaduvanshi, R. S., et al. (2012). Fluid frame magneto-hydrodynamic antenna. In 2012 International conference on communication systems and network technologies (CSNT), IEEE.

  34. Bist, S., & Yaduvanshi, R. S. (2013). Investigations into hybrid magneto-hydrodynamic (MHD) antenna. International Journal of Computers & Technology, 4(2b2), 454–459.

    Article  Google Scholar 

  35. Sahu, B., et al. (2013). Stacked cylindrical dielectric resonator antenna with metamaterial as a superstrate for enhancing the bandwidth and gain. In 2013 IEEE international conference on signal processing, computing and control (ISPCC), IEEE.

  36. Al Salameh, M. S., Antar, Y. M. M., & Seguin, G. (2002). Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 50(10), 1415–1419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahender Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Yaduvanshi, R.S. & Vaish, A. An Investigation of Massive Gain in Hybrid Configurable Cylindrical Dielectric Resonator Antenna. Wireless Pers Commun 101, 1247–1260 (2018). https://doi.org/10.1007/s11277-018-5760-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5760-z

Keywords

Navigation