Skip to main content
Log in

Joint Estimation of MIMO Channel Parameters Using Space–Time Correlation Matrix for Different Angular Distributions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new low-complexity method to jointly estimate the multiple-input multiple-output (MIMO) channel parameters namely the mean angle of arrival (AoA), the angular spread (AS) and the maximum Doppler spread (DS). We consider Gaussian and Laplacian angular distributions for the incoming AoAs in the case of a Rayleigh channel model. Our estimator is based on the magnitudes and phases of the space–time correlation functions of the received signals. To this end, closed-form expressions of the required functions were derived. Two different approaches are studied using these cross-correlation functions; first at a non zero time lag and second at two different time lags. To evaluate the robustness of the proposed estimator, the two Stage approach and the improved maximum likelihood method based on the Gauss Newton algorithm are taken as benchmarks for the mean AoA and the AS estimation. For the maximum DS, the two Rays and the auto-correlation based algorithms are chosen. Simulation results show that the proposed estimator offers more accurate estimates in almost all considered scenarios. We also compare our work to a recent joint estimator which exploits the Derivatives of the cross-correlation function (DCCF). Our method outperforms the DCCF algorithm at a lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee, M., & Cho, D. (2001). A new adaptative power control scheme based on mobile velocity in wireless mobile communication systems. IEEE Vehicular Technology Conference, 4, 2878–2882.

    Google Scholar 

  2. Vijayan, R., & Holtzman, J. M. (1993). A model for analyzing handoff algorithms. IEEE Transactions on Vehicular Technology, 42, 351–356.

    Article  Google Scholar 

  3. Austin, M. D., & Stuber, G. L. (1994). Velocity adaptative handoff algorithms for microcellular systems. IEEE Transactions on Vehicular Technology, 43, 549–561.

    Article  Google Scholar 

  4. Sun, C., Cheng, J., & Ohira, T. (2008). Handbook on advancements in smart antenna technologies for wireless networks. New York: Information Science Publishing.

    Google Scholar 

  5. Kikuchi, S., Sano, A., Tisuji, H., & Miura, R. (2004). Mobile localization using local scattering model in multipath environments. In Proceedings of IEEE 60th VTC (Vol. 60, pp. 339–343).

  6. Rao, A. M., & Jones, D. L. (2003). Efficient detection with arrays in the presence of angular spreading. IEEE Transactions on Signal Processing, 51(2), 301–312.

    Article  Google Scholar 

  7. Zhang, H., & Abdi, A. (2009). Nonparametric mobile speed estimation in fading channels: Performance analysis and experimental results. IEEE Transactions on Wireless Communications, 8, 1683–1692.

    Article  Google Scholar 

  8. Tsai, Y. R., & Yang, K. J. (2009). Approximate ML Doppler spread estimation over flat rayleigh fading channels. IEEE Signal Processing Letters, 16(11), 1007–1010.

    Article  Google Scholar 

  9. Baddour, K., & Beaulieu, N. C. (2005). Robust Doppler spread estimation in nonisotropic fading channels. IEEE Transactions Wireless Communication, 4, 2677–2682.

    Article  Google Scholar 

  10. Tepedelenlioglu, C., & Giannakis, G. B. (2001). On velocity estimation and correlation properties of narrow-band mobile communication channels. IEEE Transactions on Vehicular Technology, 50(4), 1039–1052.

    Article  Google Scholar 

  11. Souden, M., Affes, S., Benesty, J., & Bahroun, R. (2009). Robust Doppler spread estimation in the presence of a residual carrier frequency offset. IEEE Transactions on Signal Processing, 57, 4148–4153.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ko, Y. C., & Jeong, G. (2002). Doppler spread estimation in mobile communication systems. Vehicular Technology Conference VTC Spring, 4, 1941–1945.

    Google Scholar 

  13. Ali, G. A., Manzoor, S., & Jeoti, V. (2010). A new Doppler spread estimation algorithm based on zero crossings of the auto-correlation. In International Conference on Intelligent and Advanced Systems (ICIAS).

  14. Yunhe, C. (2010). Joint estimation of angle and Doppler frequency for bistatic MIMO radar. Electronics Letters, 46, 170–172.

    Article  Google Scholar 

  15. Bengtsson, M., & Ottersten, B. (2000). Low-complexity estimators for distributed sources. IEEE Transactions on Signal Processing, 48(8), 2185–2194.

    Article  Google Scholar 

  16. Souden, M., Affes, S., & Benesty, J. (2008). A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources. IEEE Transactions on Signal Processing, 56(5), 1968–1983.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kikuchi, S., Sano, A., Tsuji, H., & Miura, R. (2003). A novel approach to mobile-terminal positioning using single array antenna in urban environments. IEEE Conference on Vehicular Technology VTC-Fall, 2, 1010–1014.

    Google Scholar 

  18. Li, J., & Zhang, X. (2011). Improved joint DoD and DoA estimation for MIMO array with velocity receive sensors. IEEE Signal Processing Letters, 18, 717–720.

    Article  Google Scholar 

  19. Yan, H., Li, J., & Liao, G. (2008). Multitarget identification and localization using bistatic MIMO radar systems. EURASIP Journal on Advances in Signal Processing, 2008, 48.

    Article  MATH  Google Scholar 

  20. Jinli, C., Hong, G., & Weimin, S. (2008). Angle estimation using esprit without pairing in MIMO radar. Electronics Letters, 44, 1422–1423.

    Article  Google Scholar 

  21. Li, J., Conan, J., & Pierre, S. (2006). Using antenna array in multipath environment for wireless sensor positioning. In Vehicular Technology Conference, VTC Fall IEEE (Vol. 64).

  22. Ben Rejeb, N., Bousnina, I., Ben Salah, M. B., & Samet, A. (2014). Joint mean angle of arrival, angular and Doppler spreads estimation in macrocell environments. Eurasip Journal on Advances in Signal Processing, 2014, 133.

    Article  Google Scholar 

  23. Ben Rejeb, N., Bousnina, I., Ben Salah, M. B., & Samet, A. (2015). Mean angle of arrival, angular and Doppler spreads estimation in MIMO system. IET Signal Processing, 9(5), 395–402.

    Article  Google Scholar 

  24. Abdi, A., & Kaveh, M. (2002). Parametric modeling and estimation of the spatial characteristics of a source with local scattering. IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 2821–2824.

    Google Scholar 

  25. Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (1997). Power azimuth spectrum in outdoor environments. Electronics Letters, 33, 1583–1584.

    Article  Google Scholar 

  26. Tsai, J.-A, Buehrer, R. M., & Woerner, B. D. (2002). The impact of AOA energy distribution on the spatial fading correlation of linear antenna array. IEEE 55th Vehicular Technology Conference, VTC Spring.

  27. Abdi, A., & Kaveh, M. (2002). A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20, 550–560.

    Article  Google Scholar 

  28. Bousnina, I., Stephenne, A., Affes, S., & Samet, A. (2011). A new low-complexity angular spread estimator in the presence of line-of-sight with angular distribution selection. EURASIP Journal on Advances in Signal Processing, 2011, 88.

    Article  Google Scholar 

  29. Universal Mobile Telecommunications System (UMTS); Spatial channel model for multiple input multiple output (MIMO) simulations (3GPP TR 25.996 version 11.0.0 Release 11). September 2012.

  30. Spiegel, M. R., & Liu, J. (1999). Schaum’s mathematical handbook of formulas and tables (2nd ed.). New York: MacGraw Hill.

    Google Scholar 

  31. Kendall, W. B. (1965). Unambiguous accuracy of an interferometer angle-measuring system. IEEE Transactions on Space Electronics and Telemetry, SET–11, 62–70.

    Article  Google Scholar 

  32. Trump, Tonu, & Ottersten, Bjorn. (1996). Estimation of nominal direction of arrival and angular spread using an array of sensors. ELSEVIER Signal Processing Special Issue on Subspace Methods Part I: Array Signal Processing and Subspace Computations, 50, 57–69.

    Article  MATH  Google Scholar 

  33. Tepedelenlioglu, Cihan. (2002). Performance analysis of velocity (Doppler) estimators in mobile communications. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 3, 2201–2204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nessrine Ben Rejeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Rejeb, N., Bousnina, I., Ben Salah, M.B. et al. Joint Estimation of MIMO Channel Parameters Using Space–Time Correlation Matrix for Different Angular Distributions. Wireless Pers Commun 102, 163–181 (2018). https://doi.org/10.1007/s11277-018-5832-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5832-0

Keywords

Navigation