Skip to main content

Advertisement

Log in

Analysis and Implementation of a Gaussian Addition IR-UWB Transmitter for Increased Spectral Efficiency

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper describes a technique to improve the spectral efficiency and increase the energy in the transmitted pulse of an impulse-radio, ultra-wideband (IR-UWB) transmitter utilizing bi-phase shift keying (BPSK) modulation and working in the frequency range of 3.1–10.6 GHz. Two Gaussian bi-phase pulses are produced and form the base-band signal. These two signals are delayed with respect to each other and are independently up-converted to a different region of the UWB spectrum. The two up-converted signals are then combined to form the final IR-UWB BPSK output signal. The IR-UWB output signal is analyzed in both the time domain and frequency domain to determine time-bandwidth product and spectral efficiency (\(\eta \)). By combining the two up-converted gaussian signals, the spectral efficiency is increased to 77% and the time-bandwidth product of the output signal is 1.7. For a transmitter operating at a data rate of 250 Mbps, the energy per pulse of the output signal can be increased to 4.33 pJ while staying within the FCC spectral and power limits. This technique can also be used to produce a −30 dB notch at 5.9 GHz to further reduce any interference from an IEEE 802.11p Wifi signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems–Local and Metropolitan Area Networks–Specific Requirement Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4a, pp. 1–203 (2007).

  2. Yuce, M. R., Keong, H. C., & Chae, M. S. (2009). Wideband communication for implantable and wearable systems. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2597–2604.

    Article  Google Scholar 

  3. Liu, H., Sarrazin, J., Deshours, F., Mavridis, T., Petrillo, L., Liu, Z., et al. (2016). Performance assessment of ir-uwb body area network (ban) based on ieee 802.15.6 standard. IEEE Antennas and Wireless Propagation Letters, 15, 1645–1648.

    Article  Google Scholar 

  4. Decarli, N., Guidi, F., & Dardari, D. (2016). Passive UWB RFID for tag localization: Architectures and design. IEEE Sensors Journal, 16(5), 1385–1397.

    Article  Google Scholar 

  5. Lee, K. K., & Lande, T. S. (2014). A wireless-powered IR-UWB transmitter for long-range passive RFID tags in 90-nm CMOS. IEEE Transactions on Circuits and Systems II, 61(11), 870–874.

    Article  Google Scholar 

  6. Li, J., Zeng, Z., Sun, J., & Liu, F. (2012). Through-wall detection of human being’s movement by UWB radar. IEEE Geoscience and Remote Sensing Letters, 9(6), 1079–1083.

    Article  Google Scholar 

  7. Pittella, E., Pisa, S., & Cavagnaro, M. (2016). Breath activity monitoring with wearable uwb radars: Measurement and analysis of the pulses reflected by the human body. IEEE Transactions on Biomedical Engineering, 63(7), 1447–1454.

    Article  Google Scholar 

  8. Wylie-Green, M. P., Ranta, P. A., & Salokannel, J. (2005). Multi-band OFDM UWB solution for IEEE 802.15.3a WPANs. In Proceedings of IEEE advances in wired and wireless communication (pp. 102–105).

  9. Ganz, F., Puschmann, D., Barnaghi, P., & Carrez, F. (2015). A practical evaluation of information processing and abstraction techniques for the internet of things. IEEE Internet of Things Journal, 2(4), 340–354.

    Article  Google Scholar 

  10. IEEE Standard for Information technology–Local and metropolitan area networks–Specific requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), pp. 1–51 (2010).

  11. Wentzloff, D. D. (2007). Pulse-based ultra-wideband transmitters for digital communication. Ph.D. dissertation, Massaachusetts Institute of Technology.

  12. Jones, W. W., & Dill, J. C. (2001). The square root raised cosine wavelet and its relation to the Meyer functions. IEEE Transactions on Signal Processing, 49(1), 248–251.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chennakeshu, S., & Saulnier, G. J. (1993). Differential detection of \(\pi \)/4-shifted-DQPSK for digital cellular radio. IEEE Transactions on Vehicular Technology, 42(1), 46–57.

    Article  Google Scholar 

  14. Hu, J., Jiang, T., Cui, Z., & Hou, Y. (2008). Design of UWB pulses based on Gaussian pulse. In Proceedings of IEEE nano/micro engineered and molecular systems (pp. 651–655).

  15. Wentzloff, D. D., & Chandrakasan, A. P. (2005). A 3.1–10.6 GHz ultra-wideband Pulse-shaping Mixer. In Proceedings of IEEE radio frequency integrated circuits (RFIC) (pp. 83–86).

  16. Soman, K. P., & Ramachandran, K. I. (2010). Insight into wavelets from theory and practice. New Delhi: PHI Learning.

    Google Scholar 

  17. Bourdel, S., Bachelet, Y., Gaubert, J., Vauche, R., Fourquin, O., Dehaese, N., et al. (2010). A 9-pJ/pulse 1.42-vpp OOK CMOS UWB pulse generator for the 3.1–10.6 GHz FCC band. IEEE Transactions on Microwave Theory and Techniques, 58(1), 65–73.

    Article  Google Scholar 

  18. Hedayati, H., & Entesari, K. (2013). A 90-nm CMOS UWB impulse radio transmitter with 30-dB in-band notch at IEEE 802.11a system. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4220–4232.

    Article  Google Scholar 

  19. Mir-Moghtadaei, S. V., Fotowat-Ahmady, A., Nezhad, A. Z., & Serdijn, W. A. (2014). A 90 nm-cmos IR-UWB BPSK transmitter with spectrum tunability to improve peaceful UWB-narrowband coexistence. IEEE Transactions on Circuits and Systems I, 61(6), 1836–1848.

    Article  Google Scholar 

  20. Pyo, G., Yang, J., Kim, C. Y., & Hong, S. (2016). K-band single-path dual-mode cmos transmitter for FMCW/UWB radar. IEEE Microwave and Wireless Components Letters, 26(10), 858–860.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Kotecki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunturi, P., Kotecki, D.E. Analysis and Implementation of a Gaussian Addition IR-UWB Transmitter for Increased Spectral Efficiency. Wireless Pers Commun 102, 437–448 (2018). https://doi.org/10.1007/s11277-018-5851-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5851-x

Keywords

Navigation