Skip to main content
Log in

Novel Multi-room Multi-obstacle Indoor Propagation Model for Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper a new propagation model is proposed for use in complex indoor environments. The model was tested in the frequency range of 2.4 GHz in the environment with long hallways where the effect of guided waves may occur. The comparison with measurements confirmed that proposed model can be effectively used in such environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.

    Article  Google Scholar 

  2. Zhang, J., & De la Roche, G. (2010). Femtocells: Technologies and deployment (p. 328). New York: Wiley.

    Book  Google Scholar 

  3. Legendre, J. F., Marsault, T., & Ollivier, T. (2014). Fast 3D raytracing used for predicting TEMPEST classification. Microwave and Optical Technology Letters, 56, 519–523.

    Article  Google Scholar 

  4. Mohammed, Y. E., Abdallah, A. S., & Liu, Y. A. (2003). Characterization of indoor penetration loss at ISM band. In Proceedings of Asia-Pacific conference on environmental electromagnetic CEEM’ 2003, Hangzhou, China, 7993387.

  5. Cherukuri, J. (2004). Comparative study of stochastic indoor propagation models. Technical report, The University of North Carolina at Charlotte, 2004.

  6. Katulski, R. J., & Lipka, A. (2007). Methodology of radio signal power distribution modeling for WLAN networks. In Proceedings of EUROCON 2007 the international conference on computer as a tool, Warsaw, Poland, 9810560.

  7. Žarković, J., Stojković, P., & Nešković, N. (2011). 3D statistički propagacioni model za indoor radio pokrivanje u WLAN mrežama. In Proceedings of telecommunications forum TELFOR 2011, Belgrade, Serbia (pp. 461–464).

  8. Seidel, S., & Rappaport, T. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.

    Article  Google Scholar 

  9. Further advancements for E-UTRA (physical layer aspects). 3GPP TR 36.814 v9.0.0 2010 Tech. Rep. 4.

  10. Kyösti, P. et al. (2008). IST-4-027756 WINNER II D1.1.2 V1.2 WINNER II Channel Models.

  11. Erceg, V. et al. (2004). TGn channel Models IEEE P802.11WLANs, Technical Reports.

  12. Zhao, X., Suiyan, G., & Coulibaly, B. M. (2013). Path-loss model including los-nlos transition regions for indoor corridors at 5 GHz. IEEE Antennas and Propagation Magazine, 55, 217–223.

    Article  Google Scholar 

  13. Valcarce, A., & Zhang, J. (2010). Empirical indoor-to-outdoor propagation model for residential areas at 0.9–3.5 GHz. IEEE Antennas Wireless Propag Lett, 9, 682–685.

    Article  Google Scholar 

  14. Degli-Esposti, V., Falciasecca, G., Fuschini, F., & Vitucci, E. M. (2013). A meaningful indoor path-loss formula. IEEE Antennas and Wireless Propagation Letters, 12, 872–875.

    Article  Google Scholar 

  15. Zyoud, A., Habaebi, M., & Islam, R. (2016). Parameterized indoor propagation model for mobile communication links. Microwave and Optical Technology Letters, 58(4), 823–826.

    Article  Google Scholar 

  16. Lee, D. J. Y., & Lee, W. C. Y. (2000). Propagation prediction in and through buildings. IEEE Transactions on Vehicular Technology, 49(5), 1529–1533.

    Article  Google Scholar 

  17. Han, S., Gong, Z., Meng, W., & Li, C. (2015). An indoor radio propagation model considering angles for WLAN infrastructures. Wireless Communications and Mobile Computing, 15, 2038–2048.

    Article  Google Scholar 

  18. Borenovic, M., & Neskovic, A. Indoor georeferenced RSSI database. Resource documents. Avaiable online at http://telekomunikacije.etf.rs/research/wlanpositioning/rssiDatabase.zip. Accessed July 2017.

  19. Cisco Aironet 802.11a/b/g Cardbus AIR-CB21AG-E-K9. Avaiable online at https://www.cisco.com. Accessed November 2017.

  20. Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wassermann, W. (1996). Applied linear statistical model (4th ed.). Chicago: McGraw-Hill/Irwin.

    Google Scholar 

  21. Zhang, Y. P., & Hwang, Y. (1998). Theory of the radio-wave propagation in railway tunnels. IEEE Transactions on Vehicular Technology, 47(3), 1027–1036.

    Article  Google Scholar 

  22. Forooshani, A., Bashir, S., Michelson, D., & Noghanian, S. (2013). A survey of wireless communications and propagation modelin in underground mines. IEEE Communications Surveys & Tutorials, 15(4), 1524–1545.

    Article  Google Scholar 

  23. Molina-Garcia-Pardo, J., Lienard, M., & Deguaque, P. (2009). Propagation in tunnels: Experimental investigations and channel modeling in a wide frequency band for MIMO applications. EURASIP Journal on Wireless Communiactions and Networking, 2009, 7.

    Google Scholar 

  24. MATLAB. Resource document. www.mathworks.com.

Download references

Acknowledgements

This research is supported by the Serbian Ministry of Science and Technological Development Projects Numbers TR320025 and TR36047. The authors would like to thank professors Natasa Neskovic and Aleksandar Neskovic from School of Electrical Engineering, University of Belgrade for all the help and advices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marija Malnar or Nenad Jevtic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malnar, M., Jevtic, N. Novel Multi-room Multi-obstacle Indoor Propagation Model for Wireless Networks. Wireless Pers Commun 102, 583–597 (2018). https://doi.org/10.1007/s11277-018-5859-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5859-2

Keywords

Navigation