Skip to main content
Log in

Image Retrieval Using CBIR Including Light Position Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We propose a method for estimating the weight of the light source position to content-based image retrieval (CBIR) through retrieving image data. The image retrieval method makes use of a multi-dimensional descriptor expressing the features of the image. A multi-directional Gabor filter is then applied in order to extract the contour direction of the image, and a color correlation is applied in order to analyze the distribution of the position between the colors in the image. An HSV histogram and chromatic distribution information were obtained for the color composition analysis, and the light source position in the image was estimated for the main region extraction. The relative similarity between the images was measured through a relative comparison between each descriptor. In conventional image retrieval, there is a disadvantage in terms of the large computational intensity required, because the accuracy is degraded when simple information is used or when the result is estimated through a comparison of complex image components. However, the proposed method adds a light source location analysis element in order to ensure accurate retrieval. Image retrieval using the proposed method achieves an average retrieval accuracy of 85%, indicating that its reliability is superior to that of previously described methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Liu, Z., Li, H., Zhou, W., Zhao, R., & Tian, Q. (2014). Contextual hashing for large-scale image search. IEEE Transactions on Image Processing, 23(4), 1606–1614.

    Article  MathSciNet  MATH  Google Scholar 

  2. Carson, C., Thomas, M., Belongie, S., Hellerstein, J. M., & Malik, J. (1999). Blobworld: A system for region-based image indexing and retrieval. In International conference on advances in visual information systems (pp. 509–517). Berlin: Springer.

  3. Liu, Z., Wang, S., Zheng, L., & Tian, Q. (2017). Robust ImageGraph: Rank-level feature fusion for image search. IEEE Transactions on Image Processing, 26(7), 3128–3141.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zheng, W., Qian, Y., & Tang, H. (2011). Dimensionality reduction with category information fusion and non-negative matrix factorization for text categorization. In International conference on artificial intelligence and computational intelligence (pp. 505–512). Berlin: Springer.

  5. Jing, Y., Covell, M., Tsai, D., & Rehg, J. M. (2013). Learning query-specific distance functions for large-scale web image search. IEEE Transactions on Multimedia, 15(8), 2022–2034.

    Article  Google Scholar 

  6. Guo, K., Ma, J., & Duan, G. (2014). DHSR: A novel semantic retrieval approach for ubiquitous multimedia. Wireless Personal Communications, 76(4), 779–793.

    Article  Google Scholar 

  7. Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. In VLDB (Vol. 99, No. 6, pp. 518–529).

  8. Park, J. H., Whangbo, T. K., & Kim, K. J. (2017). A novel image identifier generation method using luminance and location. Wireless Personal Communications, 94(1), 99–115.

    Article  Google Scholar 

  9. Cheng, J., Leng, C., Li, P., Wang, M., & Lu, H. (2014). Semi-supervised multi-graph hashing for scalable similarity search. Computer Vision and Image Understanding, 124, 12–21.

    Article  Google Scholar 

  10. Weiss, Y., Torralba, A., & Fergus, R. (2009). Spectral hashing. In Advances in neural information processing systems (pp. 1753–1760).

  11. Li, J., & Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1075–1088.

    Article  Google Scholar 

  12. Han, H. H., Lee, G. S., Lee, J. Y., Kim, J. S., & Lee, S. H. (2013). A new method to create depth information based on lighting analysis for 2D/3D conversion. Journal of Central South University, 20(10), 2715–2719.

    Article  Google Scholar 

  13. Han, S. H., Hong, Y. P., & Lee, S. H. (2012). Saliency map creation method robust to the contour of objects. Journal of Digital Convergence, 10(3), 173–178.

    Google Scholar 

  14. Park, J. H., Lee, G. S., & Lee, S. H. (2015). A study on the convergence technique enhanced GrabCut algorithm using color histogram and modified sharpening filter. Journal of the Korea Convergence Society, 6(6), 1–8.

    Article  Google Scholar 

  15. Wang, J., Kumar, S., & Chang, S. F. (2012). Semi-supervised hashing for large-scale search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(12), 2393–2406.

    Article  Google Scholar 

  16. Weldon, T., Higgins, W., & Dunn, D. (1996). Efficient Gabor filter design for texture segmentation. Pattern Recognition, 29(12), 2005–2015.

    Article  Google Scholar 

  17. Weldon, T., Higgins, W., & Dunn, D. (1996). Gabor filter design for multiple texture segmentation. Optical Engineering, 35(10), 2852–2863.

    Article  Google Scholar 

  18. Jain, A., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recogn., 23(12), 1167–1186.

    Article  Google Scholar 

  19. Hofmann, T., Puzicha, J., & Buhmann, J. (1998). Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 803–818.

    Article  Google Scholar 

  20. Mehrotra, R., Namuduri, K., & Ranganathan, N. (1992). Gabor filter-based edge detection. Pattern Recognition, 25(12), 1479–1493.

    Article  Google Scholar 

  21. Ghauri, S. A., Qureshi, I. M., & Malik, A. N. (2017). A novel approach for automatic modulation classification via hidden Markov models and Gabor features. Wireless Personal Communications, 96(3), 4199–4216.

    Article  Google Scholar 

  22. Taranto, C., Di Mauro, N., Ferilli, S., & Esposito, F. (2010). Approximate image color correlograms. In Proceedings of the 18th ACM international conference on multimedia (pp 1127–1130). ACM.

  23. Zheng, Y., Grossman, M., Awate, S. P., & Gee, J. C. (2009). Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images. In International conference on medical image computing and computer-assisted intervention (pp. 852–859). Berlin: Springer.

  24. Wang, J. Z., Li, J., & Wiederhold, G. (2001). “SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23(9), 947–963.

    Article  Google Scholar 

  25. Yuan, X., Yu, J., Qin, Z., & Wan, T. (2011). A SIFT-LBP image retrieval model based on bag of features. In IEEE international conference on image processing.

  26. Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.

    Article  MATH  Google Scholar 

  27. Hiremath, P. S., & Pujari, J. (2007). Content based image retrieval using color, texture and shape features. In International conference on advanced computing and communications, 2007. ADCOM 2007 (pp. 780–784). IEEE.

  28. Nagaraja, S., & Prabhakar, C. J. (2015). Low-level features for image retrieval based on extraction of directional binary patterns and its oriented gradients histogram. arXiv preprint arXiv:1503.03606.

  29. Yu, F. X., Luo, H., & Lu, Z. M. (2011). Colour image retrieval using pattern co-occurrence matrices based on BTC and VQ. Electronics Letters, 47(2), 100–101.

    Article  Google Scholar 

  30. Lin, C. H., Chen, R. T., & Chan, Y. K. (2009). A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing, 27(6), 658–665.

    Article  Google Scholar 

  31. Guo, J. M., & Prasetyo, H. (2015). Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Transactions on Image Processing, 24(3), 1010–1024.

    Article  MathSciNet  MATH  Google Scholar 

  32. Anandh, A., Mala, K., & Suganya, S. (2016). Content based image retrieval system based on semantic information using color, texture and shape features. In International conference on computing technologies and intelligent data engineering (ICCTIDE) (pp. 1–8). IEEE.

Download references

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seuc-Ho Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HH., Ryu, SH., Chae, GS. et al. Image Retrieval Using CBIR Including Light Position Analysis. Wireless Pers Commun 105, 525–543 (2019). https://doi.org/10.1007/s11277-018-5943-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5943-7

Keywords

Navigation