Skip to main content
Log in

Multicarrier Faster-than-Nyquist Based Symbol Design with Intentional Interference for Synchronization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The multicarrier faster-than-Nyquist (MFTN) system is attractive to ultra-high definition TV because it improves on the spectral efficiency up to twice that of the conventional orthogonal frequency division multiplexing system. However, the MFTN system causes the inter channel interference (ICI) by corrupting the orthogonality between subcarriers. In this paper, a pilot pattern for the MFTN system is proposed to improve synchronization performance by removing the ICI in pilot subcarriers while preserving the advantage of the MFTN scheme. To remove the interference, the known pilot pattern is intentionally distorted according to the amount of the interference at the transmitter to improve on the performance of synchronization without affecting the net data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mazo, J. E. (1975). Faster-than-Nyquist signaling. Bell System Technical Journal, 44, 1451–1462.

    Article  MathSciNet  MATH  Google Scholar 

  2. Rusek, F., & Anderson, J. B. (2009). Multi-stream faster than Nyquist signaling. IEEE Transactions on Communications, 57(5), 1329–1340.

    Article  MATH  Google Scholar 

  3. Stitz, T. H., Ihalainen, T., Viholainen, A., & Renfors, M. (2010). Pilot-based synchronization and equalization in filter bank multicarrier communications. EURASIP Journal on Advances in Signal Processing, 2010, 1–18.

    Article  Google Scholar 

  4. Cui, W., Qu, D., Jiang, T., & Farhang-Boroujeny, B. (2015). Coded auxiliary pilots for channel estimation in FBMC–OQAM systems. IEEE Transactions on Vehicular Technology, PP(99), 1–11.

    Google Scholar 

  5. Park, M. C. Jo, B. G., Kim, Y., Lim, H., & Han, D. S. (2016). Synchronization for faster than Nyquist signaling transmission. In IEEE international conference on consumer electronics, 2016 (pp. 417–418).

  6. Liang, X., Liu, A., & Gao, B. (2015). Method for carrier frequency-offset estimation of faster-than-Nyquist signaling. IEEE Electronics Letters, 51(25), 2151–2153.

    Article  Google Scholar 

  7. Liang, X., Liu, A., Gao, B., & Wang, K. (2016). Method of timing estimation for FTN signaling with high-order modulation. IEEE Electronics Letters, 52(13), 1134–1136.

    Article  Google Scholar 

  8. Zhang, X., Pan, D., & Feng, Y. (2016). An effective carrier phase estimation scheme in faster than Nyquist WDM transmission system. Proceedings of IEEE Photonic Network Communications, 32(2), 253–258.

    Article  Google Scholar 

  9. Kim, H. J., & Seo, J. S. (2016). Carrier frequency offset estimation for faster-than-Nyquist transmission in DVB-S2 systems. In Proceedings of international symposium on IEEE broadband multimedia systems and broadcasting (pp. 1–4).

  10. Kim, P. & Oh, D. G. (2015) Synchronization for faster than Nyquist signaling transmission. Proceedings of the international conference on ubiquitous future networks (pp. 944–949).

  11. Fan, S., Guo, S., Zhou, X., Ren, Y., Li, Y. G., & Chen, X. (2017). Faster-than-Nyquist signaling: An overview. IEEE Access, 5, 1925–1940.

    Article  Google Scholar 

  12. Ishihar, T., & Sugiura, S. (2018). Differential faster-than-Nyquist signaling. IEEE Access, 6, 4199–4206.

    Article  Google Scholar 

  13. Peng, S., Liu, A., Song, L., Memon, I., & Wang, H. (2018). Spectral efficiency maximization for deliberate clipping-based multicarrier faster-than-Nyquist signaling. IEEE Access, 6, 13617–13623.

    Article  Google Scholar 

  14. Liu, A., Peng, S., Song, L., Liang, X., Wang, K., & Zhang, Q. (2018). Peak-to-average power ratio of multicarrier faster-than-Nyquist signals: Distribution, optimization and reduction. IEEE Access, 6, 11977–11987.

    Article  Google Scholar 

  15. Dasalukunte, D., Rusek, F., Anderson, J. B. & Owall, V. (2009). Transmitter architecture for faster-than-Nyquist signaling systems. In IEEE international symposium on circuits and systems, 2009 (pp. 1028–1031).

  16. Dasalukunte, D., Rusek, F., & Owall, V. (2011). Multicarrier faster-than-Nyquist transceivers: Hardware architecture and performance analysis. IEEE Transactions on Circuits and Systems I, 58(4), 827–838.

    Article  MathSciNet  Google Scholar 

  17. Liveris, A. D., & Georghiades, C. N. (2003). Exploiting faster-than-Nyquist signaling. IEEE Transactions on Communications, 51(9), 1502–1511.

    Article  Google Scholar 

  18. Barbieri, A., Fertonani, D., & Colavolpe, G. (2009). Time-frequency packing for linear modulations: Spectral efficiency and practical detection schemes. IEEE Transactions on Communications, 57(10), 2951–2959.

    Article  Google Scholar 

  19. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.

    Article  Google Scholar 

  20. Anderson, B. (2013). Faster-than-Nyquist signaling. Proceedings of IEEE, 101(8), 1817–1830.

    Article  Google Scholar 

  21. Prlja, A., & Anderson, J. B. (2012). Reduced-complexity receivers for strongly narrowband intersymbol interference introduced by faster-than-Nyquist signaling. IEEE Transactions on Communications, 60(9), 2591–2601.

    Article  Google Scholar 

  22. Yoo, Y. G., & Cho, J. H. (2010). Asymptotic optimality of binary faster-than-Nyquist signaling. IEEE Communications Letters, 14(9), 788–790.

    Article  Google Scholar 

  23. Rusek, F., & Anderson, J. B. (2009). Constrained capacities for faster than Nyquist signaling. IEEE Transactions on Information Theory, 55(2), 764–775.

    Article  MathSciNet  MATH  Google Scholar 

  24. Dasalukunte, D., Rusek, F., & Owall, V. (2011). Improved memory architecture for multicarrier faster-than-Nyquist iterative decoder. In IEEE computer society annual symposium on very large scale integration, 2011 (pp. 296–300).

  25. Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), ETSI EN 302 755, v1.2.1, October 2010.

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03934420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Seog Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.C., Han, D.S. Multicarrier Faster-than-Nyquist Based Symbol Design with Intentional Interference for Synchronization. Wireless Pers Commun 107, 1507–1520 (2019). https://doi.org/10.1007/s11277-018-5986-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5986-9

Keywords

Navigation