Skip to main content
Log in

On the Security of Relay Assisted Cognitive Radio Networks in the Presence of Primary Transceiver Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, the benefit of distinguishable diversity order within a co-operative relay system is exploited to overcome the problem of secure communication in an underlay wiretap cognitive radio network. This network is in a coexistence with a primary transceiver network and it is subjected to multiple eavesdropping attacks which employ a specific interception strategy. To improve the physical layer security, simple relay selection schemes will be proposed that aims at maximizing the minimum of the dual hop communication secrecy rates under primary network constraints. For Rayleigh fading channels, exact and asymptotic closed form expressions will be derived for the secondary system outage and secrecy rate. Furthermore, based on the network topology, tight inner and outer bounds will subsequently be derived on the system secrecy outage probability. By employing analytical and simulation results, the gain of the system diversity order is obviously investigated and emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This assumption is reasonable when the well-known user represents a legitimate user for some applications and an eavesdropper for others.

  2. It is nonsense considering a colluding system as it reduces the opportunity to occupy a legitimate channel.

  3. It is supposed that all relay nodes decode the source message correctly.

  4. The term \( \frac{1}{2} \) indicates the dual split communication protocol (the time slot is divided into two fractions of communication sub-slots).

  5. The diversity gain can be improved to approach \( N, N \triangleq number of relays \), in this simple model by utilizing optimal relay selection and/or optimal combining.

  6. It is noted that we simply plot one case for inner bound, outer bound and asymptotic curves so that the graphics do not interfere so as to be more visible.

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.

    Article  Google Scholar 

  2. Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2008). Cooperative communications and networking. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  3. Amarasuriya, G., Ardakani, M., & Tellambura, C. (2010). Output-Threshold multiple relay selection scheme for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3091–3097.

    Article  Google Scholar 

  4. Ikki, S. S., & Ahmed, M. H. (2009). On the performance of amplify-and forward cooperative diversity with the nth best-relay selection scheme. In Proceedings of 2009 IEEE international conference on communications (ICC’09) (pp. 1–6).

  5. Duy, T. T., An, B., & Kong, H.-Y. (2010). A novel cooperative-aided transmission in multi-hop wireless networks. IEICE Transactions on Communications, E93.B(3), 716–720.

    Article  Google Scholar 

  6. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  8. Cuba, F. G., Cacheda, R. A., & Castaño, F. J. G. (2012). A survey on cooperative diversity for wireless networks. IEEE Communications Surveys & Tutorials, 14(3), 822–835.

    Google Scholar 

  9. Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

  10. Ikki, S., & Ahmed, M. H. (2009), Performance analysis of decode-and-forward incremental relaying cooperative diversity networks over Rayleigh fading channels. In Proceedings of IEEE VTC spring, Barcelona, April 2009 (pp. 1–6).

  11. Ikki, S., Uysal, M., & Ahmed, M. H. (2009). Performance analysis of incremental-best-relay amplify-and-forward technique. In Proceedings of IEEE GLOBECOM, Honolulu, Hawaii, November 30–December 4 (pp. 1–6).

  12. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.

    Article  Google Scholar 

  13. Suraweera, H. A., Michalopoulos, D. S., & Karagiannidis, G. K. (2009). Semi blind amplify-and-forward with partial relay selection. Electronics Letters, 45(6), 317–319.

    Article  Google Scholar 

  14. Duy, T. T., & Kong, H.-Y. (2013). Performance analysis of incremental amplify-and-forward relaying protocols with nth best partial relay selection under interference constraint. Wireless Personal Communications, 71(4), 2741–2757.

    Article  Google Scholar 

  15. Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mo, J., Tao, M., & Liu, Y. (2012). Relay placement for physical layer security: A secure connection perspective. IEEE Communications Letters, 16(6), 878–881.

    Article  Google Scholar 

  18. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  19. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.

    Article  MathSciNet  Google Scholar 

  20. Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.

    Article  Google Scholar 

  21. Srinivasa, S., & Jafar, S. A. (2007). Cognitive radios for dynamic spectrum access-the throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.

    Article  Google Scholar 

  22. Akyildiz, I. F., et al. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  23. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  24. Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  25. Bao, V. N. Q., Trung, N. L., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12(12), 6067–6085.

    Article  Google Scholar 

  26. Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.

    Article  Google Scholar 

  27. Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop AF relay system with relay selection without eavesdropper’s CSI. IEEE Communications Letters, 18(10), 1759–1762.

    Article  Google Scholar 

  28. Kundu, C., Ghose, S., & Bose, R. (2015). Secrecy outage of dual-hop regenerative multi-relay system with relay selection. IEEE Transactions on Wireless Communications, 14(8), 4614–4625.

    Article  Google Scholar 

  29. Salhab, A., & Zummo, S. (2014). Cognitive DF generalized order relay selection networks with imperfect channel estimation and interference from primary user. In 2014 IEEE global communications conference.

  30. Ghose, S., Kundu, C., & Bose, R. (2016). Secrecy performance of dual-hop decode-and-forward relay system with diversity combining at the eavesdropper. IET Communications, 10(8), 904–914.

    Article  Google Scholar 

  31. Dan Ngoc, P. T., Duy, T. T., Bao, V. N. Q., & Nhat, N. L. (2016). Security-reliability analysis for underlay cognitive radio networks with relay selection methods under impact of hardware noises. In 2016 International conference on advanced technologies for communications (ATC), Hanoi (pp. 174–179).

  32. Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.

    Article  MathSciNet  MATH  Google Scholar 

  33. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  34. Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society Series B, 34(2), 308–310.

    MathSciNet  MATH  Google Scholar 

  35. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  36. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.

    Article  Google Scholar 

  37. Ikhlef, A., Michalopoulos, D. S., & Schober, R. (2011). Buffers improve the performance of relay selection. In Proceedings of 2011 IEEE global communications conference (pp. 1–6).

  38. Chakraborty, P., & Prakriya, S. (2017). Secrecy outage performance of a cooperative cognitive relay network. IEEE Communications Letters, 21(2), 326–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shady M. Ibraheem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, W., Shokair, M. & Ibraheem, S.M. On the Security of Relay Assisted Cognitive Radio Networks in the Presence of Primary Transceiver Network. Wireless Pers Commun 104, 949–977 (2019). https://doi.org/10.1007/s11277-018-6062-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6062-1

Keywords

Navigation