Skip to main content

Advertisement

Log in

Integrated Blind Signal Separation and Neural Network Based Energy Detector Architecture

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy detector is the simplest spectrum sensing technique in cognitive radio in terms of computation complexity as it is developed assuming only channel noises for the detection of primary user signal. However in realistic sense the typical communication system comprises of various other sources of noise (like thermal noise) that significantly affect the sensing performance of the detector. The conventional energy detector is also not a coherent detector as the attributes of the primary user signal is unknown. Considering these limitations a system is proposed that can have the knowledge of the primary user signal attributes under realistic situation at the secondary user (SU) receiver thereby enhancing the accuracy of the sensing significantly. In this work a new coherent energy detector system architecture is proposed that first separates the signal components from a noisy signals (non Gaussian noise) at SU receiver, then from the separated signals it estimates the signal attributes (power of the signal, noise variance, signal-to-noise ratio) required for conventional energy detector. The work is developed as a hybrid system model utilizing blind source separation algorithm and neural network (NN) known hereafter as ‘integrated blind signal separation (BSS)-NN based energy detector’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software dened radio. Ph.D. Thesis, KTH Royal Institute of Technology Sweden.

  2. Sengupta, S., Chatterjee, M., & Kwiat, K. (2009). Dynamic spectrum access in cognitive radio tactical networks. In Proceedings of 9th IEEE conference on wireless communications and networking (pp. 1–8).

  3. Lee, C. H., & Wolf, W. (2011). Blind signal separation for cognitive radio. Journal of Signal Processing System, 63, 67–81.

    Article  Google Scholar 

  4. Liu, X., Tan, X., & Anghuwo, A. A. (2009). Spectrum detection of cognitive radio based on blind signal separation. In IEEE youth conference on information, computing and telecommunication, Beijing, China (pp. 1–8). https://doi.org/10.1109/YCICT.2009.5382401.

  5. Irigh, S. S., Sadough, S. M. S., & Ghorashi, S. A. (2011). A Blind source separation technique for spectrum sensing in cognitive radio networks based on Kurtosis Metric. In International conference on computer and knowledge engineering, Mashad, Iran (pp. 327–331).

  6. Chen, Z., & Qui, R. C. (2010). Prediction of channel state for cognitive radio using higher order hidden Markov model. In Proceedings of the IEEE Southeast Conference, Concord, NC, USA (pp. 276–282).

  7. Mukherjee, A., Maiti, S., & Datta, A. (2014). Spectrum sensing for cognitive radio using blind source separation and hidden Markov model. In 4th international conference on advanced computing and communication technologies, Rohtak (pp. 1–10). https://doi.org/10.1109/ACCT.2014.63.

  8. Nasser, A., Mansour, A., Clement, K., Assaf, H., & Abdullah, H. (2017) Blind source separation based full duplex cognitive radio. In Proceedings of EEETEM, Beiruth, Lebanon (pp. 86–90).

  9. Arjoune, Y., Mrabet, Z., Ghazi, H., & Tamtaoui, A. (2018). Spectrum sensing: Enhanced energy detection technique based on noise measurement. In IEEE 8th annual computing and communication workshop and conference, Las Vegas, USA (pp. 828–834).

  10. Raunier, A., & Shin, S. Y. (2018). Cooperative spectrum sensing based on adaptive activation of energy and preamble detector for cognitive radio networks. SIP, 7(2), 1–7.

    Google Scholar 

  11. Mohammad, F. R., Ciuonzo, D., & Mohammed, Z. A. K. (2018). Mean-based blind hard decision fusion rules. IEEE Signal Processing Letters, 25(5), 630–634.

    Article  Google Scholar 

  12. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communication Surveys Tutorials, 11(116), 130.

    Google Scholar 

  13. Sonnenschein, A., & Fishman, P. (1992). Radiometric detection of spread spectrum signals in noise of uncertain power. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 654–660.

    Article  Google Scholar 

  14. Joshi, D. R., Popescu, D. C. O., & Dobre, A. (2011). Gradient based threshold adaptation for energy detector in cognitive radio system. IEEE Communication Letters, 15(19), 24.

    Google Scholar 

  15. Nikonowicz, J., Mahmood, A., Sisinni, E., & Gidlund, M. (2018). Noise power estimators in ISM radio environments: Performance comparison and enhancement using a novel samples separation technique. IEEE Transaction on Instrumentation and Measurement, 99, 1–11. https://doi.org/10.1109/TIM.2018.2833998.

    Google Scholar 

  16. Barros, A. K., Mansour, A., & Ohnishi, N. (1998). Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing, 22(1), 173186.

    MATH  Google Scholar 

  17. Bates, R. H. T. (1982). Astronomical speckle imaging. Physics Reports, 90(4), 203297.

    Article  Google Scholar 

  18. Hyvarinen, A., Oja, E., Hoyer, P., & Hurri, J. (1998). Image feature extraction by sparse coding and independent component analysis. Procedings of ICPR, 98, 12681273.

    Google Scholar 

  19. Douglas, S. C., Haykin, S. (2000). Relationships between blind deconvolution and blind source separation. In S. Haykin (Ed.), Unsupervised adaptive filtering: Blind deconvolution (Vol. 2). Wiley.

  20. Yarkan, S., & Arslan, H. (2008). Exploiting location awareness toward improved wireless system design in cognitive radio. IEEE Communications Magazine, 46(1), 128136.

    Article  Google Scholar 

  21. Buehrer, R. M., Mendoza, N. S., & Woerner, B. D. (2000). A simulation comparison of multiuser receivers for cellular CDMA. IEEE Transactions on Vehicular Technology, 49(4), 1065–1085.

    Article  Google Scholar 

  22. Zhou, J., & Thompson, J. (2008). Linear precoding for the downlink of multiple input single output coexisting wireless systems. IET Communications, 2(6), 742–752.

    Article  Google Scholar 

  23. Kohno, R. (2000). Structures and theories of software antennas for software dened radio. IEICE Transactions on Communications, E83–B(6), 1189–1199.

    Google Scholar 

  24. Islam, H., Liang, Y. C., & Tuan, H. A. (2008). Joint power control and beamforming for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(7), 2415–2419.

    Article  Google Scholar 

  25. Razavilar, J., Farrokhi, F. R., & Liu, K. J. R. (1999). Software radio architecture with smart antennas: A tutorial on algorithms and complexity. IEEE Journal on Selected Areas in Communications, 17(4), 662–676.

    Article  Google Scholar 

  26. Benveniste, A., Goursat, M., & Ruget, G. (1980). Robust identication of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications. IEEE Transactions on Automatic Control, 25(3), 385–399.

    Article  MathSciNet  MATH  Google Scholar 

  27. Papoulis, A. (1984). Probability, random variables and stochastic processes. New York: McGraw-Hill.

    MATH  Google Scholar 

  28. Pearson, K. (1901). On line and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11), 559–572.

    MATH  Google Scholar 

  29. Hotelling, H. (1933). Analysis of a complex statistical variable into principal component. Journal of Educational Psychology, 24, 417–441.

    Article  Google Scholar 

  30. Jolliffe, J. T. (2002). Principal component analysis. Springer series in statistics (2nd ed.). New York: Springer.

    Google Scholar 

  31. Cui, Q. (2014). Suppression of impulsive noise in wireless communication. Masters thesis in electronics, University of Gavle, Sweden.

  32. Hyvarinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  33. Amari, S., & Cichocki, A. (1998). Adaptive blind signal processingneural network approaches. Proceedings of the IEEE, 86(10), 2026–2048.

    Article  Google Scholar 

  34. Hyvrinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  35. Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., et al. (1975). Adaptive noise cancellation: Principles and applications. Proceedings of the IEEE, 63(1692), 1716.

    Google Scholar 

  36. Das, A., Chatterjee, B., Pattanayak, S., & Ojha, M. (2015). An improved energy detector for spectrum sensing in cognitive radio system with adaptive noise cancellation and adaptive threshold. New Delhi: Springer.

    Book  Google Scholar 

  37. Idrees, Z., Bhatti, F. A., & Rashdi, A. (2015). Spectrum sensing using low-complexity principal component for cognitive radio. Wireless Communication and Networking. https://doi.org/10.1186/s13638-015-0412-4.

  38. Ying-Chang, L., Zeng, Y., Peh, Y. C. Y., & Hoang, A. T. (2008). Sensing throughput trade off for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(1326), 1337.

    Google Scholar 

  39. Giucai, Y. U., Chengzi, L., Antian, X. M., & Xi, W. (2012). A novel energy detection scheme based on dynamic threshold in cognitive radio systems. Journal of Computational Information System, 8(2245), 2252.

    Google Scholar 

  40. Yu, G., Long, C., Xiang, M., & Xie, W. (2012). Novel energy detection scheme based on dynamic threshold in cognitive radio system. Journal of Computational Information System, 8(2245), 2252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, B., Hossain, A., Dey, R. et al. Integrated Blind Signal Separation and Neural Network Based Energy Detector Architecture. Wireless Pers Commun 106, 2315–2333 (2019). https://doi.org/10.1007/s11277-018-6081-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6081-y

Keywords

Navigation