Skip to main content

Advertisement

Log in

Energy Efficient Data Collection Algorithm for Mobile Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor network (WSN) with mobile sink serves a lot of industrial and agricultural monitoring applications. The data collection with WSN has been popularly known in many applications such as smart environments, health monitoring, habitat monitoring, surveillance and tracking systems. The mobile sink moves to the corresponding cluster and gathers the data and moves to the next cluster head (CH) for the same. The data loss and waiting time of the data in the CH results from energy consumption and work repetition. This article provides a novel energy efficient data collection scheme. The data collection is done by the sink in a Polling based M/G/1 server model. The cluster member (CM) sends the data in N threshold model to the CH. The CH gathers the data from the CM and reports to sink once it arrives nearby. The energy efficient cluster head selection algorithm is evaluated with the proposed model and the waiting time is analyzed. The data arrival from the CM to the CH is considered as Poisson in nature. The sink mobility with respect to polling system is analyzed. The sink data collection is done through dynamic polling mechanism based on the CH arrival rate. The proposed algorithm outperforms the modified low energy adaptive clustering hierarchy and energy-aware multi-hop routing protocol (M-GEAR) protocols in terms of lifetime, waiting time and throughput. The proposed algorithm provides high resistance to energy hole and HOTSPOT problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, X., Nayak, A., & Stojmenovic, I. (2010). Sink mobility in wireless sensor networks. In A. Nayak & I. Stojmenovic (Eds.), Wireless sensor and actuator networks. Hoboken: Wiley.

    Google Scholar 

  2. Khan, M. I., Gansterer, W. N., & Haring, G. (2012). Static vs. mobile sink: the influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36, 965–978.

    Article  Google Scholar 

  3. Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.

    Article  Google Scholar 

  4. Halder, S., & Ghosal, A. (2016). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with a Gaussian distribution. Springer Telecommunication Systems, 64, 113.

    Article  Google Scholar 

  5. Saranya, V., Shankar, S., & Kanagachidambaresan, G. R. (2018). Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Personal Communications, 100(4), 1553–1567.

    Article  Google Scholar 

  6. MICA2MoteDatasheet. (2004).http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0042-02_A_MICA.pdf.

  7. Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65, 347–367.

    Article  Google Scholar 

  8. He, L. (2012). Evaluating service disciplines for on-demand mobile data collection in sensor networks. IEEE Transactions on Mobile Computing, 13(4), 797–810.

    Google Scholar 

  9. Rasouli, R., Ahmadi, M., & Ahmadvand, A. (2014). Energy consumption estimation in clustered wireless sensor networks using M/M/1 Q queuing model. International Journal of Wireless & Mobile Networks (IJWMN), 5, 15.

    Article  Google Scholar 

  10. Jiang, F. -C., Huang, D. -C., Tung, C. -Y, & Wang, K. -H. (2010). Mitigation techniques for the energy hole problem in sensor networks using N-policy M/G/l queuing models in IET International Conference on Frontier Computing. Theory, Technologies and Applications, 281–286.

  11. Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant mechanism for wireless body sensor network (WBSN). Wireless Personal Communication, 80(1), 247–260.

    Article  Google Scholar 

  12. Huanga, D.-C., & Lee, J.-H. (2013). A dynamic N threshold prolongs lifetime method for wireless sensor nodes. Elsevier Mathematical and Computer Modelling, 57, 2731–2741.

    Article  MathSciNet  Google Scholar 

  13. Peng, Y., Li, Y., Shu, L., & Wang, W. (2013). An energy-efficient clustered distributed coding for large-scale wireless sensor networks. The Journal of Supercomputing Springer, 66(2), 649–669.

    Article  Google Scholar 

  14. He, L., Zhuang, Y., Pan, J., & Xu, J. (2014). Evaluating on-demand data collection with mobile elements in wireless sensor networks. IEEE Journals & Magazines, 13, 797–810.

    Google Scholar 

  15. Jiang, C. & Huang, D-C. (2010). Design framework to optimize power consumption and latency delay for sensor nodes using min (N, T) policy M/G/1 queuing models. In IEEE Conference Publications, pp. 1–8.

  16. Murugan, K., & Pathan, A.-S. K. (2015). Prolonging the lifetime of wireless sensor networks using secondary sink nodes. Springer Telecommunication Systems, 62, 347–361.

    Article  Google Scholar 

  17. Wang, Z., Yang, K. & Hunter, D. K. (2012). Modelling and analysis of multi-sink wireless sensor networks using queuing theory. In 4th Computer Science and Electronic Engineering Conference, pp. 169–174.

  18. Dudin, A. N., Vishnevsky, V. M., & Sinjugina, J. V. (2014). Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration. Springer Telecommunication systems, 61, 403–415.

    Article  Google Scholar 

  19. Musumpuk, R., Walingo, T & Takawira, F. (2015). Probability generating function, mean and variance of the service time distribution of an M/Gc/1 queuing.

  20. Harrison, P. G., Patel, N. M., & Knottenbelt, W. J. (2016). Energy–performance trade-offs via the EP queue. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 1(2), 6.

    Article  Google Scholar 

  21. Tang, S. (2013). An analytic traffic model with adaptive QoS control in an unreliable wireless sensor network. Springer Telecommunication Systems, 53, 415–424.

    Article  Google Scholar 

  22. Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2012). Lifetime elongation for wireless sensor network using queue-based approaches. The Journal of Supercomputing Springer, 59(3), 1312–1335.

    Article  Google Scholar 

  23. Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2011). Lifetime elongation for wireless sensor network using queue-based approaches. Journal of Supercomputing, 59, 1312–1335.

    Article  Google Scholar 

  24. De Cuypere, E., De Turck, K., & Fiems, D. (2017). A queueing model of an energy harvesting sensor node with data buffering. Springer Telecommunication Systems, 67, 281–295.

    Article  Google Scholar 

  25. Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4),1935–1950.

    Article  Google Scholar 

  26. Darabkh, K. A., Albtoush, W. Y., & Jafar, I. F. (2017). Improved clustering algorithms for target tracking in wireless sensor networks. The Journal of Supercomputing Springer, 73(5), 1952–1977.

    Article  Google Scholar 

  27. Shin, K., & Kim, S. (2012). Predictive routing for mobile sinks in wireless sensor networks: a milestone-based approach. The Journal of Supercomputing Springer, 62(3), 1519–1536.

    Article  Google Scholar 

  28. Toloueiashtian, M., & Motameni, H. (2018). A new clustering approach in wireless sensor networks using fuzzy system. The Journal of Supercomputing Springer, 74(2), 717–737.

    Article  Google Scholar 

  29. Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing Springer, 73(7), 3277–3290.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saranya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, V., Shankar, S. & Kanagachidambaresan, G.R. Energy Efficient Data Collection Algorithm for Mobile Wireless Sensor Network. Wireless Pers Commun 105, 219–232 (2019). https://doi.org/10.1007/s11277-018-6109-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6109-3

Keywords

Navigation