Skip to main content
Log in

Flip Left-to-Right Approach Based Inverse Tree Interleavers for Unconventional Integrated OFDM-IDMA and SCFDMA-IDMA Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Several interleavers have been proposed for conventional interleave division multiple access (CIDMA) systems which provides a mean to control burst errors and to reduce multi user and multiple access interferences. However, CIDMA alone is incapable of completely removing inter-symbol interference and inter-carrier interference problems even in presence of such interleaver. In this paper, a recently developed novel interleaver i.e. ‘flip left–right approach based inverse-tree interleaver’ (FLRITI) or simply ‘inverse tree interleaver’, has been explored for two unconventional integrated interleave division multiple access techniques i.e. single carrier frequency division multiple access cum interleave division multiple access (SCFDMA-IDMA) and orthogonal frequency division multiplexing based interleave division multiple access (OFDM-IDMA). The results and analysis reveal that this unconventional integration of CIDMA with SCFDMA and OFDM techniques in presence of FLRITI improves the overall system performance in terms of bit-error rate, memory footprint and computation complexity. Therefore, it validates the worthiness of FLRITI as a competent interleaver for the communication systems to be used even beyond fourth generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ƛ:

Level of repetition coder

K:

Total no. of users

k:

kth specific user

k :

Interleaving pattern for kth user

dk :

Input data sequence of kth user

\(l\) :

Length of data sequence

Ck :

Chip sequence for kth user

\(\widetilde{{x_{k} }}\) :

Interleaved sequence of kth user

\(X_{k}\) :

Sequence obtained after SCM and IFFT operations

\(F\) :

M × M DFT matrix

M:

Length of chip sequence and/or number of OFDM subcarriers

Ł:

Length of cyclic prefix

\({{\uptau }}_{\text{d}}\) :

Channel delay spread

\({{\uptau }}_{{{\text{e}}\left( { \hbox{max} } \right)}}\) :

Maximum timing-error

L:

Length of MAC

\(r\) :

Resultant output of MAC

\(r_{k}\) :

Received vector for kth user

N :

AWGN

\(\widetilde{H}_{k}\) :

M × M circular channel matrix

\(T_{k}\) :

M × M circular time-shift matrix

H:

Channel matrix

\(H_{k}\) :

Diagonalized channel matrix

\(\xi_{k}\) :

Noise plus interference component

\(e_{ESE }\) :

Output of ESE

\(e_{DEC }\) :

Output of DEC

\(\prod_{LR}^{ - 1}\) :

Inverse interleaving pattern of sequence flipped left-to-right

\(\prod\) :

Mother or reference interleaver

3GPP:

3rd Generation partnership project

APP:

Apriori probability

AWGN:

Additive white Gaussian noise

B4G:

Beyond 4th generation

BER:

Bit error rate

CBC:

Chip-by-chip detection

CDMA:

Code-division multiple access

CIDMA:

Conventional interleave division multiple access

CPI:

Cyclic prefix insertion

CPR:

Cyclic prefix removal

DEC:

Decoder

DFT:

Discrete Fourier transforms

DSCM:

De-mapping of subcarriers

ESE:

Elementary signal estimator

FEC:

Forward error correction

FFT:

Fast Fourier transforms

FLRITI:

Flip left-to-right approach based inverse tree interleavers

ICI:

Intercarrier interference

IDFT:

Inverse discrete Fourier transform

IFFT:

Inverse fast Fourier transform

IDMA:

Interleave division multiple access

IIDMA:

Integrated interleave division multiple access

ISI:

Intersymbol interference

ITBI:

Inverse tree based interleaver

ITI:

Inverse tree interleaver

LLR:

Logliklihood ratio

LTE:

Long-term evolution

MAC:

Multiple access channel

MAI:

Multiple access interference

MUI:

Multiuser interference

OFDM:

Orthogonal frequency division multiplexing

OFDM-IDMA:

Orthogonal frequency division multiplexing based interleave division multiple access

PAPR:

Peak-to-average power ratio

PN:

Pseudo noise

POC:

Probability of occurrence

RI:

Random interleavers

SCFDMA-IDMA:

Single carrier frequency division multiple access based interleave division multiple access

SCM:

Subcarrier mapping

TBI:

Tree based interleaver

TI:

Tree interleaver

References

  1. Ping, L., Liu, L., Wu, K., & Leung, W. K. (2006). Interleave-division multiple-access. IEEE Transactions on Wireless Communications, 5(4), 938–947.

    Article  Google Scholar 

  2. Wu, H., Ping, L., & Perotti, A. (2006). User-specific chip-level interleaver design for IDMA systems. IEEE Electronics Letters, 42(4), 233–234.

    Article  Google Scholar 

  3. Shukla, M., Srivastava, V. K., & Tiwari, S. (2008). Analysis and design of tree based interleaver for multiuser receivers in IDMA scheme. In Proceedings of the of IEEE 16th international conference on networks ICON)’08, New Delhi, India (pp. 978–981).

  4. Yadav, M., & Banerjee, P. (2016). Bit error rate analysis of various interleavers for IDMA scheme. In Proceedings of the IEEE 3rd international conference on signal processing and integrated networks (SPIN)’16, Noida, India.

  5. Shukla, M., Srivastava, V. K., & Tiwari, S. (2012). Implementation of interleavers for iterative IDMA receivers. Research Journal of Information Technology, 4, 12–21.

    Article  Google Scholar 

  6. Sharma, S., Sau, P. C., & Shukla, A. (2014). Performance survey of IDMA with different interleavers. In Proceedings of the IEEE 1st international conference on signal processing and integrated networks (SPIN)’14, Noida, India (pp. 344–348).

  7. Yadav, M., Gautam, P. R., Shokeen, V., & Singhal, P. K. (2017). Modern Fisher-Yates shuffling based random interleaver design for SCFDMA-IDMA system. Wireless Personal Communications, 97(1), 63–73.

    Article  Google Scholar 

  8. Zhang, R., & Hanzo, L. (2008). Three design aspects of multicarrier interleave-division multiple-access. The IEEE Transactions on Vehicular Technology, 57, 3607–3617.

    Article  Google Scholar 

  9. Yadav, M., Shokeen, V., & Singhal, P. K. (2017). Uncoded integrated interleave division multiple access systems in presence of power interleavers. Radioelectronics and Communications Systems, 60(11), 503–511.

    Article  Google Scholar 

  10. Kusume, K., Bauch, G., & Utschick, W. (2012). IDMA vs. CDMA: Analysis and comparison of two multiple access schemes. IEEE Transactions on Wireless Communications, 11(1), 78–87.

    Article  Google Scholar 

  11. Mahadevappa, R. H., & Proakis, J. G. (2002). Mitigating multiple access interference and intersymbol interference in uncoded CDMA systems with chip-level interleaving. IEEE Transactions on Wireless Communications, 1, 781–792.

    Article  Google Scholar 

  12. Yadav, M., Shokeen, V., & Singhal, P. K. (2016). BER versus BSNR analysis of conventional IDMA and OFDM-IDMA based systems with tree interleaving. In IEEE 2nd international conference on advances in computing, communication and automation (ICACCA)-Fall’16.

  13. Pupeza, I., Kavcic, A., & Ping, L. (2006) Efficient generation of interleavers for IDMA. In Proceedings of the IEEE international conference on communications, ICC’06, Istambul, Turkey.

  14. Ren, D., Ge, J., & Li, J. (2013). Modified collision-free interleavers for high speed turbo decoding. Wireless Personal Communications, 68, 939–948.

    Article  Google Scholar 

  15. Abderrahmane, L. H., & Chellali, S. (2008). Performance comparison between Gaussian Interleaver, Rayleigh interleaver, and dithered golden interleaver. Annals of Telecommunications Letters, 63, 449–452.

    Article  Google Scholar 

  16. Koutsouveils, K. V., & Dimakis, C. E. (2007). A low complexity algorithm for generating turbo code s-random interleavers. Wireless Personal Communications, 46, 365–370.

    Article  Google Scholar 

  17. Ying, T., Hong, S., & Bei, Z. H. (2004). Interleaver design method for turbo codes based on genetic algorithm. Wuhan University Journal of Natural Sciences, 9(3), 323–326.

    Article  Google Scholar 

  18. Trifina, L., Munteanu, V., & Tarniceriu, D. (2007). Turbo codes with modified Welsh-Costas interleavers. Annals of Telecommunications, 62, 1045–1052.

    Google Scholar 

  19. Xin-rui, M., You-yun, X., & Le, Z. (2007). A proof of maximum contention-free property of interleavers for turbo codes using permutation polynomials over integer rings. Journal of Zhejiang University Science A, 8(1), 24–27.

    Article  Google Scholar 

  20. Yuan, J., Vucetic, B., Feng, W., & Tan, M. (2001). Design of cyclic shift interleavers for turbo-codes. Annals of Telecommunications, 56, 384–393.

    Google Scholar 

  21. Yadav, M., Shokeen, V., & Singhal, P. K. (2017). Flip left right approach based inverse tree interleaver design for IDMA scheme. AEÜ: International Journal of Electronics and Communications, 81, 182–191.

    Google Scholar 

  22. Shukla, M., Srivastava, V. K., & Tiwari, S. (2009). Analysis and design of optimum interleaver for iterative receivers in IDMA scheme. Wireless Communication and Mobile Computing, 9, 1312–1317.

    Article  Google Scholar 

  23. Mahafeno, I., Langlais, C. & Jego C. (2006). OFDM-IDMA versus IDMA with ISI cancellation for quasi-static Rayleigh fading multipath channels. In Proceedings of the 4th international symposium turbo codes (pp. 140–144).

  24. Ping, L., Guo, Q., & Tong, J. (2007). The OFDM-IDMA approach to wireless communication systems. IEEE Wireless Communications, 14, 18–24.

    Article  Google Scholar 

  25. Wang, Z. H., & Yu, G. F. (2013). Study on simulation performance of OFDM-IDMA system. Applied Mechanics and Materials, 380–384, 4120–4123.

    Article  Google Scholar 

  26. Bie, H. & Bie, Z. (2006). A hybrid multiple access scheme: OFDMA-IDMA. In IEEE 1st international conference on communication and networking in Beijing, China (pp. 1–3).

  27. Xiong, X., Luo, Z. (2011). SC-FDMA-IDMA: A hybrid multiple access scheme for LTE uplink. In Proceedings of the 7th IEEE international conference on wireless communication networking and mobile computing (WiCOM)’11, Wuhan, China (pp. 1–5).

  28. Ma, X., Kobayashi, H., & Schwartz, S. C. (2003). Effect of frequency offset on BER of OFDM and single carrier systems. Proceedings of the IEEE 14th International Symposium on PIMRC’03, Beijing, China, 3, 2239–2243.

    Google Scholar 

  29. Berkmann, J., Carbonelli, C., Dietrich, F., Drewes, C. & Xu, W. (2008). On 3G LTE terminal implementation-standard, algorithms, complexities and challenges. In Proceedings of the IEEE international wireless communications and mobile computing conference (IWCMC)’08, Crete Island (pp. 970–975).

  30. Myung, H. G., Lim, J., & Goodman, D. J. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1(3), 30–38.

    Article  Google Scholar 

  31. Myung, H. G. (2007). Introduction to single carrier FDMA (2007). In Proceedings of the 15th European IEEE signal processing conference’07, Poznan (pp. 2144–2148).

  32. Yang, K. & Wang, X. (2005). A multicarrier chip-interleaved multiuser UWB system. In IEEE international conference (ICASSP)’05 (pp. III-325–328).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Shokeen, V. & Singhal, P.K. Flip Left-to-Right Approach Based Inverse Tree Interleavers for Unconventional Integrated OFDM-IDMA and SCFDMA-IDMA Systems. Wireless Pers Commun 105, 1009–1026 (2019). https://doi.org/10.1007/s11277-019-06133-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06133-3

Keywords

Navigation