Skip to main content
Log in

Performance Study of Dual Unmanned Aerial Vehicles with Underlaid Device-to-Device Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicle (UAV) as an aerial base station is a predominant cost-effective solution of coverage extension in wireless communication network. It has a potential to provide disaster relief solutions and public safety services by enabling low power, highly reliable, and low latency connectivity. In this paper, deployment of UAVs in a given geographical area with coverage extension capacity is analyzed at low altitude platform. This model includes UAV with downlink users and Device-to-Device (D2D) communication underlaid with cellular network. In this work, analysis is given for dual (two) UAVs by considering two scenarios: with interference and without interference. Coverage probability and system sum rate are derived, which depends on the UAV altitude and D2D density. Our analytical results show that significant improvement in terms of coverage probability and system throughput is obtained as compared to single UAV case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Hourani, A., Kandeepan, S., & Jamalipour, A. (2014). Modeling air-to-ground path loss for low altitude platforms in urban environments. In 2014 IEEE global communications conference (pp. 2898–2904). https://doi.org/10.1109/GLOCOM.2014.7037248.

  2. Al-Hourani, A., Kandeepan, S., & Lardner, S. (2014). Optimal lap altitude for maximum coverage. IEEE Wireless Communications Letters, 3(6), 569–572. https://doi.org/10.1109/LWC.2014.2342736.

    Article  Google Scholar 

  3. Bucaille, I., Hthuin, S., Munari, A., Hermenier, R., Rasheed, T., & Allsopp, S. (2013). Rapidly deployable network for tactical applications: Aerial base station with opportunistic links for unattended and temporary events absolute example. In MILCOM 2013—2013 IEEE military communications conference (pp. 1116–1120). https://doi.org/10.1109/MILCOM.2013.192.

  4. Cisco: Cisco visual networking index: Forecast and methodology, 2016–2021. http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf. Accessed January 16, 2018.

  5. Corson, M. S., Laroia, R., Li, J., Park, V., Richardson, T., & Tsirtsis, G. (2010). Toward proximity-aware internetworking. IEEE Wireless Communications, 17(6), 26–33. https://doi.org/10.1109/MWC.2010.5675775.

    Article  Google Scholar 

  6. Daniel, K., Rohde, S., & Wietfeld, C. (2010). Leveraging public wireless communication infrastructures for UAV-based sensor networks. In 2010 IEEE international conference on technologies for homeland security (HST) (pp. 179–184). https://doi.org/10.1109/THS.2010.5655064.

  7. Dhillon, H. S., Huang, H., & Viswanathan, H. (2017). Wide-area wireless communication challenges for the internet of things. IEEE Communications Magazine, 55(2), 168–174. https://doi.org/10.1109/MCOM.2017.1500269CM.

    Article  Google Scholar 

  8. ElSawy, H., & Hossain, E. (2014). On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control. IEEE Transactions on Wireless Communications, 13(8), 4454–4469. https://doi.org/10.1109/TWC.2014.2316519.

    Article  Google Scholar 

  9. Feng, D., Lu, L., Yuan-Wu, Y., Li, G. Y., Feng, G., & Li, S. (2013). Device-to-device communications underlaying cellular networks. IEEE Transactions on Communications, 61(8), 3541–3551. https://doi.org/10.1109/TCOMM.2013.071013.120787.

    Article  Google Scholar 

  10. Feng, Q., McGeehan, J., Tameh, E. K., & Nix, A. R. (2006). Path loss models for air-to-ground radio channels in urban environments. In 2006 IEEE 63rd vehicular technology conference (Vol. 6, pp. 2901–2905). https://doi.org/10.1109/VETECS.2006.1683399.

  11. Feng, Q., Tameh, E. K., Nix, A. R., & McGeehan, J. (2006). Wlcp2-06: Modelling the likelihood of line-of-sight for air-to-ground radio propagation in urban environments. IEEE Globecom, 2006, 1–5. https://doi.org/10.1109/GLOCOM.2006.917.

    Google Scholar 

  12. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Mikls, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177. https://doi.org/10.1109/MCOM.2012.6163598.

    Article  Google Scholar 

  13. Haenggi, M., & Ganti, R. K. (2009). Interference in large wireless networks (Vol. 3). Boston: Now Publishers, Inc. https://doi.org/10.1561/1300000015.

    MATH  Google Scholar 

  14. Han, Z., Swindlehurst, A. L., & Liu, K. J. R. (2009). Optimization of manet connectivity via smart deployment/movement of unmanned air vehicles. IEEE Transactions on Vehicular Technology, 58(7), 3533–3546. https://doi.org/10.1109/TVT.2009.2015953.

    Article  Google Scholar 

  15. Holis, J., & Pechac, P. (2008). Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas. IEEE Transactions on Antennas and Propagation, 56(4), 1078–1084. https://doi.org/10.1109/TAP.2008.919209.

    Article  Google Scholar 

  16. Jiang, F., & Swindlehurst, A. L. (2012). Optimization of UAV heading for the ground-to-air uplink. IEEE Journal on Selected Areas in Communications, 30(5), 993–1005. https://doi.org/10.1109/JSAC.2012.120614.

    Article  Google Scholar 

  17. Komerl, J., & Vilhar, A. (2014) Base stations placement optimization in wireless networks for emergency communications. In 2014 IEEE international conference on communications workshops (ICC) (pp. 200–205). https://doi.org/10.1109/ICCW.2014.6881196.

  18. Li, Y., & Cai, L. (2017). Uav-assisted dynamic coverage in a heterogeneous cellular system. IEEE Network, 31(4), 56–61. https://doi.org/10.1109/MNET.2017.1600280.

    Article  Google Scholar 

  19. Lien, S. Y., Chen, K. C., & Lin, Y. (2011). Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Communications Magazine, 49(4), 66–74. https://doi.org/10.1109/MCOM.2011.5741148.

    Article  Google Scholar 

  20. Lin, X., Andrews, J. G., Ghosh, A., & Ratasuk, R. (2014). An overview of 3GPP device-to-device proximity services. IEEE Communications Magazine, 52(4), 40–48. https://doi.org/10.1109/MCOM.2014.6807945.

    Article  Google Scholar 

  21. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2015) Drone small cells in the clouds: Design, deployment and performance analysis. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). https://doi.org/10.1109/GLOCOM.2015.7417609.

  22. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016) Mobile internet of things: Can UAVs provide an energy-efficient mobile architecture? In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). https://doi.org/10.1109/GLOCOM.2016.7841993.

  23. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016) Optimal transport theory for power-efficient deployment of unmanned aerial vehicles. In 2016 IEEE international conference on communications (ICC) (pp. 1–6). https://doi.org/10.1109/ICC.2016.7510870.

  24. Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2016). Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Transactions on Wireless Communications, 15(6), 3949–3963. https://doi.org/10.1109/TWC.2016.2531652.

    Article  Google Scholar 

  25. Phunchongharn, P., Hossain, E., & Kim, D. I. (2013). Resource allocation for device-to-device communications underlaying LTE-advanced networks. IEEE Wireless Communications, 20(4), 91–100. https://doi.org/10.1109/MWC.2013.6590055.

    Article  Google Scholar 

  26. Rohde, S., & Wietfeld, C. (2012) Interference aware positioning of aerial relays for cell overload and outage compensation. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5). https://doi.org/10.1109/VTCFall.2012.6399121.

  27. Sakr, A. H., & Hossain, E. (2015). Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 63(5), 1867–1880. https://doi.org/10.1109/TCOMM.2015.2411266.

    Article  Google Scholar 

  28. Tang, H., & Ding, Z. (2016). Mixed mode transmission and resource allocation for D2D communication. IEEE Transactions on Wireless Communications, 15(1), 162–175. https://doi.org/10.1109/TWC.2015.2468725.

    Article  Google Scholar 

  29. Wang, H., Wang, J., Ding, G., Wang, L., Tsiftsis, T. A., & Sharma, P. K. (2017). Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks. IEEE Transactions on Green Communications and Networking, PP(99), 1–1. https://doi.org/10.1109/TGCN.2017.2767203.

    Google Scholar 

  30. Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009) Power optimization of device-to-device communication underlaying cellular communication. In 2009 IEEE international conference on communications (pp. 1–5). https://doi.org/10.1109/ICC.2009.5199353.

  31. Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications, 62(11), 3814–3824. https://doi.org/10.1109/TCOMM.2014.2363092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Pawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, P., Yadav, S.M. & Trivedi, A. Performance Study of Dual Unmanned Aerial Vehicles with Underlaid Device-to-Device Communications. Wireless Pers Commun 105, 1111–1132 (2019). https://doi.org/10.1007/s11277-019-06138-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06138-y

Keywords

Navigation