Skip to main content
Log in

A Low-Power CMOS Transceiver in 130 nm for Wireless Sensor Network Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

RF modules are responsible for major power consumptions in wireless sensor network nodes. A transceiver is the core of RF modules. A low-power RF transceiver in 130 nm at 1 v is presented for WSN applications. Bias currents of the VCO and frequency multiplier are limited to 0.07 and 0.1 mA, respectively. The LNA and mixers are designed with the current reused technique and an additional cascode transistor is also used in the LNA. Conversion gain of this transceiver is 25 dB. The P1dB is − 22.5 dB. The noise figure (NF) at 50 MHz as IF frequency is about 4.6 dB with a 0.4 mW DC power. In order to have higher efficiency and lower power in a transmitter, the power oscillator class E is used with the combination of injection locked and current reused. The PAE of a transmitter is about 50% with 10 dBm output power. The transmitter VCO and preamplifier power consumption are 112 and 798 uW, respectively. A switch antenna is implemented on a single chip in this transceiver which has a better performance as compared to previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: Technology, protocols, and applications. Wiley.

  2. Palkovic, M., Debacker, P., Avasare, P., Dupont, S., & Vander Aa, T. (2012). Power estimation at different abstraction levels for wireless baseband processors. Journal of Low Power Electronics, 8(5), 726–738.

    Article  Google Scholar 

  3. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40, 102–114.

    Article  Google Scholar 

  4. Liang, S., Tang, Y., & Zhu, Q. (2007). Passive wake-up scheme for wireless sensor networks. In Innovative computing, information and control, 2007. ICICIC’07. Second international conference on, 2007, pp. 507–507.

  5. Alves, D. C., da Silva, G. S., de Lima, E. R., Chaves, C. G., Urdaneta, D., & Perez, T. (2016). Architecture design and implementation of key components of an OFDM transceiver for IEEE 802.15. 4 g. In Circuits and systems (ISCAS), 2016 IEEE international symposium on, 2016, pp. 550–553.

  6. Diao, P., Alves, T., Poussot, B., & Villegas, M. (2017). A new method and transceiver architecture dedicated to continuous detection of very small metallic object. In Millimeter-waves, 2017 10th global symposium on, 2017, pp. 169–171.

  7. Singh, S. P., & Sharma, S. C. (2015). A survey on research issues in wireless sensor networks. Open Trans. Wireless Sensor Netw, 2(1), 1–18.

    Google Scholar 

  8. Porret, A.-S., Melly, T., Enz, C., & Vittoz, E. (2000). A low-power low-voltage transceiver architecture suitable for wireless distributed sensors network. In Circuits and systems, 2000. proceedings. ISCAS 2000 Geneva. The 2000 IEEE international symposium on, 2000, pp. 56–59.

  9. Le, V. H., Han, S.-K., Lee, J.-S., & Lee, S.-G. (2009). Current-reused ultra low power, low noise LNA+ mixer. IEEE Microwave and Wireless Components Letters, 19(11), 755–757.

    Article  Google Scholar 

  10. Chong, W.-K., Ramiah, H., Tan, G.-H., Vitee, N., & Kanesan, J. (2014). Design of ultra-low voltage integrated CMOS based LNA and mixer for ZigBee application. AEU-International Journal of Electronics and Communications, 68(2), 138–142.

    Article  Google Scholar 

  11. Chang, C.-H., & Jou, C. F. (2012). A direct conversion merged LNA-I/Q-mixer with noise reduction using dual cross coupling for WiMAX/WiBro applications. IEEE Microwave and Wireless Components Letters, 22, 32–34.

    Article  Google Scholar 

  12. Hwang, Y.-S., & Yoo, H.-J. (2007). A low power folded RF front-end with merged LNA and mixer for ZigBee/Bluetooth. In Radio and wireless symposium, 2007 IEEE, 2007, pp. 85–86.

  13. Li, Z., Cheng, G., & Wang, Z. (2018). A 0.1–1 GHz low power RF receiver front-end with noise cancellation technique for WSN applications. AEU-International Journal of Electronics and Communications, 83, 288–294.

    Article  Google Scholar 

  14. Balan, Z., Ramiah, H., & Rajendran, J. (2017). A single chip 2.4 GHz quadrature LNA-IQ mixer in 180 nm CMOS technology. In Postgraduate research in microelectronics and electronics (PrimeAsia), 2017 IEEE Asia Pacific conference on, 2017, pp. 65–68.

  15. Jarvinen, J. A., Kaukovuori, J., Ryynanen, J., Jussila, J., Kivekas, K., Honkanen, M., et al. (2005). 2.4-GHz receiver for sensor applications. IEEE Journal of Solid-State Circuits, 40, 1426–1433.

    Article  Google Scholar 

  16. Wang, A. Y. (2005). Lower power RF transceiver modeling and design for wireless microsensor networks. Massachusetts Institute of Technology.

  17. Huang, Z.-Y., Hung, Y.-T., Huang, C.-C., & Chen, M.-P. (2008). A 0.18 um CMOS current reused low-noise amplifier with gain compensated for ultra-wideband wireless receiver. In ITC-CSCC: International technical conference on circuits systems, computers and communications, pp. 437–440.

  18. Darabi, H., & Abidi, A. A. (2000). Noise in RF-CMOS mixers: A simple physical model. IEEE Journal of Solid-State Circuits, 35, 15–25.

    Article  Google Scholar 

  19. Hsieh, H.-H., & Lu, L.-H. (2007). Design of ultra-low-voltage RF frontends with complementary current-reused architectures. IEEE Transactions on Microwave Theory and Techniques, 55, 1445–1458.

    Article  Google Scholar 

  20. Song, T., Oh, H.-S., Baek, S.-H., Hong, S., & Yoon, E. (2006). A 2.4-GHz sub-mW CMOS current-reused receiver front-end for wireless sensor network. In Radio frequency integrated circuits (RFIC) symposium, 2006 IEEE, p. 4.

  21. O’Ciardha, E., Lidholm, S. U., & Lyons, B. (2000). Generic-device frequency-multiplier analysis-a unified approach. IEEE Transactions on Microwave Theory and Techniques, 48, 1134–1141.

    Article  Google Scholar 

  22. Song, T., Oh, H.-S., Yoon, E., & Hong, S. (2007). A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network. IEEE Journal of Solid-State Circuits, 42, 1012–1022.

    Article  Google Scholar 

  23. Ko, S., Kim, J.-G., Song, T., Yoon, E., & Hong, S. (2004). 20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers. In Radio frequency integrated circuits (RFIC) symposium, 2004. Digest of Papers. 2004 IEEE, pp. 269–272.

  24. Kim, T. W., Kim, B., & Lee, K. (2004). A new mixer linearization method and optimization of integrated inductor for single balance mixer LO buffer. In Radio frequency integrated circuits (RFIC) symposium, 2004. Digest of Papers. 2004 IEEE, pp. 43–46.

  25. Sjoland, H., Karimi-Sanjaani, A., & Abidi, A. A. (2003). A merged CMOS LNA and mixer for a WCDMA receiver. IEEE Journal of Solid-State Circuits, 38, 1045–1050.

    Article  Google Scholar 

  26. Der, L., & Razavi, B. (2003). A 2-GHz CMOS image-reject receiver with LMS calibration. IEEE Journal of Solid-State Circuits, 38, 167–175.

    Article  Google Scholar 

  27. Boom, N., Rens, W., & Crols, J. (2004). A 5.0 mW 0dBm FSK transmitter for 315/433 MHz ISM applications in 0.25/spl mu/m CMOS. In Solid-state circuits conference, 2004. ESSCIRC 2004. Proceeding of the 30th European, pp. 199–202.

  28. Quinlan, P., Crowley, P., Chanca, M., Hudson, S., Hunt, B., Mulvaney, K., et al. (2004). A multimode 0.3-200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-/spl mu/m CMOS. IEEE Journal of Solid-State Circuits, 39, 2297–2310.

    Article  Google Scholar 

  29. Yun, S., Shin, S., Choi, H., & Lee, S. (2005). A 1 mW current-reuse CMOS differential LC-VCO with low phase noise pp. 540–616.

  30. Yun, S.-J., Shin, S.-B., Choi, H.-C., & Lee, S.-G. (2005). A 1 mW current-reuse CMOS differential LC-VCO with low phase noise. In Solid-state circuits conference, 2005. Digest of technical papers. ISSCC. 2005 IEEE international, pp. 540–616.

  31. Carmo, J., Mendes, P., Afonso, J., Couto, C., & Correia, J. (2007). A 2.4-GHz wireless sensor network for smart electronic shirts integration. In Industrial electronics, 2007. ISIE 2007. IEEE international symposium on, pp. 1356–1359.

  32. Rappaport, T. S. (2002). Wireless communications-principles and practice (the book end). Microwave Journal, 45, 128–129.

    Google Scholar 

  33. Sokal, N. O., & Sokal, A. D. (1975). Class EA new class of high-efficiency tuned single-ended switching power amplifiers. IEEE Journal of Solid-State Circuits, 10, 168–176.

    Article  Google Scholar 

  34. Beffa, F., Vogt, R., Bachtold, W., Zellweger, E., & Lott, U. (2002). A 6.5-mw receiver front-end for bluetooth in 0.18-/spl mu/m cmos. In Radio frequency integrated circuits (RFIC) symposium, 2002 IEEE, pp. 391–394.

  35. Peiris, V., Arm, C., Bories, S., Cserveny, S., Giroud, F., & Graber, P. (2005). A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18/spl mu/m CMOS. In Solid-state circuits conference, 2005. Digest of technical papers. ISSCC. 2005 IEEE international, pp. 258–259.

  36. Kanda, A. (2000). A Si RF switch MMIC for the cellular frequency band using SOI-CMOS technology. In Asia-Pacific workshop on fundamental and application of advanced semiconductor devices (AWAD2000) Dig. tech. papers, pp. 79–83.

  37. Yamamoto, K., Heima, T., Furukawa, A., Ono, M., Hashizume, Y., Komurasaki, H., et al. (2001). A 2.4-GHz-band 1.8-V operation single-chip Si-CMOS T/R-MMIC front-end with a low insertion loss switch. IEEE Journal of Solid-State Circuits, 36, 1186–1197.

    Article  Google Scholar 

  38. Kulas, L., & Mrozowski, M. (2004). Macromodels in the frequency domain analysis of microwave resonators. IEEE Microwave and Wireless Components Letters, 14, 94–96.

    Article  Google Scholar 

  39. Otis, B., Chee, Y. H., & Rabaey, J. (2005). A 400/spl mu/W-RX, 1.6 mW-TX super-regenerative transceiver for wireless sensor networks. In Solid-state circuits conference, 2005. Digest of technical papers. ISSCC. 2005 IEEE international, pp. 396–606.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ghorbani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrouj, A.R., Ghorbani, A.R., Ghaznavi-Ghoushchi, M.B. et al. A Low-Power CMOS Transceiver in 130 nm for Wireless Sensor Network Applications. Wireless Pers Commun 106, 1015–1039 (2019). https://doi.org/10.1007/s11277-019-06201-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06201-8

Keywords

Navigation