Skip to main content
Log in

Reconfigurable Sea-Water Based Reflectarray Antenna for UHF Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

High efficiency sea-water based reflectarray antenna for maritime wireless communications at 740 MHz is introduced in this paper. The proposed reflectarray consists of 169 unit-cell elements with area of 330.2 × 330.2 cm2. Each unit-cell element consists of a cylindrical dielectric container filled with sea-water and is mounted on a conducting plate. It introduces a reflection phase variation from 0 to 313 degrees. The reflectarray is designed and analyzed using the finite integral technique and compared with that calculated using the finite element method. The radiation characteristics of 13 × 13 sea-water based reflectarray are investigated and presented. The main beam direction of the sea-water based reflectarray is controlled by the water level in each unit-cell element through an electronic valves. The reflectarray introduces a maximum gain of 26.2 dB at 740 MHz and 1-dB gain bandwidth of 50 MHz The effect of temperature variation on the electrical properties of sea-water material and their effect on the radiation characteristics of the water-based reflectarray are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kosta, Y. (2004). Liquid antenna. IEEE AP-S International Symposium Digest, 3, 2392–2395.

    Google Scholar 

  2. Xing, L., Huang, Y., Xu, Q., & Alja’afreh, S.S. (2015). Overview of water antenna designs for wireless communications. In IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 233–234, June 2015.

  3. Xing, L. (2015). Investigations of water-based liquid antennas for wireless communications, Ph.D. thesis University of Liverpool, UK.

  4. Klein, L., & Swift, C. T. (1977). An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Transactions on Antennas and Propagation, 25(1), 104–111.

    Article  Google Scholar 

  5. Hua, C., Shen, Z., & Lu, J. (2014). High-efficiency sea-water monopole antenna for maritime wireless communications. IEEE Transactions on Antennas and Propagation, 62(12), 5968–5973.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rongguo, Z., Zhang, H., & Xin, H. (2009). A compact water based dielectric resonator antenna. In IEEE Antennas and Propagation Society International Symposium, APSURSI’09, pp.1–4, 2009.

  7. Hu, Z., Shen, Z., & Wu, W. (2014). Reconfigurable leaky-wave antenna based on periodic water grating. IEEE Antennas and Wireless Propagation Letters, 13, 134–137.

    Article  Google Scholar 

  8. Li, Y., & Luk, K. (2015). A water dense dielectric patch antenna. IEEE Access, 3, 274–280.

    Article  Google Scholar 

  9. Gaber, S., Zainud-Deen, S. H., & Malhat, H. A. (2014). Analysis and design of reflectarrays/transmitarrays antennas. Riga: Lap Lambert Academic Publishing.

    Google Scholar 

  10. Malhat, H. A., Zainud-Deen, S. H., Badawy, M. M., & Awadalla, K. H. (2015). Dual-mode plasma reflectarray/transmitarray antennas. IEEE Transactions on Plasma Science, 43(9), 3582–3589.

    Article  Google Scholar 

  11. Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Progress In Electromagnetics Research, PIER, 32, 65–87.

    Article  Google Scholar 

  12. Zhou, X., & Pan, G. W. (2006). Application of physical spline finite element method (PSFEM) to full wave analysis of waveguide. Progress In Electromagnetics Research (PIER), 60, 19–41.

    Article  Google Scholar 

  13. Ellison, W., Balana, A., Delbos, G., Lamkaouchi, K., Eymard, L., Guillou, C., et al. (1998). New permittivity measurements of seawater. Radio Science, 33(3), 639–648.

    Article  Google Scholar 

  14. Kumar, A. (1979). Complex permittivity and microwave heating of pure water, tap water and salt solution. International Journal of Electronics, 47(6), 531–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainud-Deen, S.H., Malhat, H.AA. & Abdelbary, M. Reconfigurable Sea-Water Based Reflectarray Antenna for UHF Applications. Wireless Pers Commun 106, 1649–1657 (2019). https://doi.org/10.1007/s11277-019-06235-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06235-y

Keywords

Navigation