Skip to main content
Log in

Optical Burst Routing by Balanced Wavelength Allocation Under Multi-objective Quality Metrics

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The optical burst switching is promising optical network technique that intends to transmit data in the form of bursts with the ability of dynamic switching between sub-wave lengths. One among the crucial issues of the OBS networks is burst loss due to suboptimal and often impediment burst scheduling and wavelength allocation strategies. Hence, the major contributions of the contemporary research in regard to OBS networks entails to portray the optimal burst routing strategies. The contribution of this manuscript is balanced wavelength allocation using differential evolution method in short referred as BWADE, which selects an optimum multi-hop route that intends to uses multi-objective QoS aspects as a fitness scale for differential evolution algorithm. The experimental study concluding that the proposed BWADE outperforming the other contemporary routing approaches through simulation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, Y., Qiao, C., & Yu, X. (2004). Optical burst switching (OBS): A new area in optical networking research. IEEE Network, 18(3), 16–23.

    Article  Google Scholar 

  2. Xiong, Y., Vandenhoute, M., & Cankaya, H. C. (2000). Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications, 18(10), 1838–1851.

    Article  Google Scholar 

  3. Barpanda, R. S., Turuk, A. K., & Sahoo, B. (2018). QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization. Digital Communications and Networks, 4(1), 3–12.

    Article  Google Scholar 

  4. Rosberg, Z., Le Vu, H., Zukerman, M., & White, J. (2003). Performance analyses of optical burst-switching networks. IEEE Journal on Selected Areas in Communications, 21(7), 1187–1197.

    Article  Google Scholar 

  5. Belbekkouche, A., Hafid, A., Gendreau, M., & Tagmouti, M. (2011). Path-based QoS provisioning for optical burst switching networks. Journal of Lightwave Technology, 29(13), 2048–2063.

    Article  Google Scholar 

  6. Zhang, Q., Vokkarane, V. M., Jue, J. P., & Chen, B. (2004). Absolute QoS differentiation in optical burst-switched networks. IEEE Journal on Selected Areas in Communications, 22(9), 1781–1795.

    Article  Google Scholar 

  7. Chen, Y., Hamdi, M., & Tsang, D. H. (2001). Proportional QoS over OBS networks. In Global telecommunications conference, 2001. GLOBECOM’01. IEEE (Vol. 3, pp. 1510–1514). IEEE.

  8. Ramaswami, R., Sivarajan, K., & Sasaki, G. (2009). Optical networks: A practical perspective. Burlington: Morgan Kaufmann.

    Google Scholar 

  9. Brackett, C. A. (1990). Dense wavelength division multiplexing networks: Principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964.

    Article  Google Scholar 

  10. Qiao, C., & Yoo, M. (1999). Optical burst switching (OBS)—A new paradigm for an Optical Internet^{1}. Journal of high speed networks, 8(1), 69–84.

    Google Scholar 

  11. Thodime, G. R., Vokkarane, V. M., & Jue, J. P. (2003, December). Dynamic congestion-based load balanced routing in optical burst-switched networks. In Global telecommunications conference, 2003. GLOBECOM’03. IEEE (Vol. 5, pp. 2628–2632). IEEE.

  12. Dolzer, K., Gauger, C., Späth, J., & Stefan, B. (2001). Evaluation of reservation mechanisms for optical burst switching. AEU-International Journal of Electronics and Communications, 55(1), 18–26.

    Article  Google Scholar 

  13. Ljolje, M., Inkret, R., & Mikac, B. (2005, January). A comparative analysis of data scheduling algorithms in optical burst switching networks. In 2005 conference on optical network design and modeling.

  14. Yoo, M., Qiao, C., & Dixit, S. (2000). QoS performance of optical burst switching in IP-over-WDM networks. IEEE Journal on Selected Areas in Communications, 18(10), 2062–2071.

    Article  Google Scholar 

  15. Yang, M., Zheng, S. Q., & Verchere, D. (2001). A QoS supporting scheduling algorithm for optical burst switching DWDM networks. In Global telecommunications conference, 2001. GLOBECOM’01. IEEE (Vol. 1, pp. 86–91). IEEE.

  16. J Xu, J., Qiao, C., Li, J., & Xu, G. (2003, March). Efficient channel scheduling algorithms in optical burst switched networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 2268–2278). IEEE.

  17. Vokkarane, V. M., Zhang, Q., Jue, J. P., & Chen, B. (2002, November). Generalized burst assembly and scheduling techniques for QoS support in optical burst-switched networks. In Global telecommunications conference, 2002. GLOBECOM’02. IEEE (Vol. 3, pp. 2747–2751). IEEE.

  18. Ping, D. U. (2007). QoS control and performance improvement methods for optical burst switching networks. PhD Dissertation, department of informatics, School of multidisciplinary sciences, The graduate university for advanced studies (SOKENDAI).

  19. Danielsen, S. L., Mikkelsen, B., Joergensen, C., Durhuus, T., & Stubkjaer, K. E. (1997). WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance. Journal of Lightwave Technology, 15(2), 219–227.

    Article  Google Scholar 

  20. Forghieri, F., Bononi, A., & Prucnal, P. R. (1995). Analysis and comparison of hot-potato and single-buffer deflection routing in very high bit rate optical mesh networks. IEEE Transactions on Communications, 43(1), 88–98.

    Article  Google Scholar 

  21. Ozdaglar, A. E., & Bertsekas, D. P. (2003). Routing and wavelength assignment in optical networks. IEEE/ACM Transactions On Networking (ton), 11(2), 259–272.

    Article  Google Scholar 

  22. Chraplyvy, A. R. (1990). Limitations on lightwave communications imposed by optical-fiber nonlinearities. Journal of Lightwave Technology, 8(10), 1548–1557.

    Article  Google Scholar 

  23. Liga, G., Xu, T., Alvarado, A., Killey, R. I., & Bayvel, P. (2014). On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission. Optics Express, 22(24), 30053–30062.

    Article  Google Scholar 

  24. Maher, R., Xu, T., Galdino, L., Sato, M., Alvarado, A., Shi, K., et al. (2015). Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation. Scientific Reports, 5, 8214.

    Article  Google Scholar 

  25. Wen, B., & Sivalingam, K. M. (2002). Routing, wavelength and time-slot assignment in time division multiplexed wavelength-routed optical WDM networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 3, pp. 1442–1450). IEEE.

  26. Wen, B., Shenai, R., & Sivalingam, K. (2005). Routing, wavelength and time-slot-assignment algorithms for wavelength-routed optical WDM/TDM networks. Journal of Lightwave Technology, 23(9), 2598.

    Article  Google Scholar 

  27. Rajalakshmi, P., & Jhunjhunwala, A. (2006, September). Routing wavelength and timeslot reassignment algorithms for TDM based optical WDM networks-multi rate traffic demands. In 14th IEEE international conference on networks, 2006. ICON’06 (Vol. 2, pp. 1–6). IEEE.

  28. Rajalakshmi, P., & Jhunjhunwala, A. (2007). Routing wavelength and time-slot reassignment algorithms for TDM based optical WDM networks. Computer Communications, 30(18), 3491–3497.

    Article  Google Scholar 

  29. Um, T. W., Choi, J. K., Choi, S. G., & Ryu, W. (2006, July). Centralized resource allocation for time-slotted OBS networks. In International conference on networking and services, 2006. ICNS’06 (p. 40). IEEE.

  30. Yang, W., & Hall, T. J. (2006, May). Distributed dynamic routing, wavelength and timeslot assignment for bandwidth on demand in agile all-optical networks. In Canadian conference on electrical and computer engineering, 2006. CCECE’06 (pp. 136–139). IEEE.

  31. Zhang, Z., Liu, L., & Yang, Y. (2007). Slotted optical burst switching (SOBS) networks. Computer Communications, 30(18), 3471–3479.

    Article  Google Scholar 

  32. Noguchi, H., & Kamakura, K. (2008, December). Effect of one-way mode of hybrid reservation on slotted optical burst switching networks. In International symposium on information theory and its applications, 2008. ISITA 2008 (pp. 1–6). IEEE.

  33. Jia, L., Fang-yuan, J., & Xiao-xiao, X. (2010, May). A dynamic routing, wavelength and timeslot assignment algorithm for WDM-TDM optical networks. In 2010 2nd international conference on future computer and communication (ICFCC) (Vol. 1, pp. V1–533). IEEE.

  34. Shan, G., Zhu, G., & Liu, D. (2011). Study on the problem of routing, wavelength, and time-slot assignment towards optical time-slot switching technology. Photonic Network Communications, 22(2), 162–171.

    Article  Google Scholar 

  35. Donato, E., Joaquim, C. J., Antnio, V., & Ahmed, P. (2012). A proposal of dynamic RWA using ant colony in optical burst switched networks. In The proceedings of the eleventh international conference on networks (ICN 2012) (pp. 246–252).

  36. Barpanda, R. S., Turuk, A. K., & Sahoo, B. (2017). QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization. Digital Communications and Networks, 4, 3–12.

    Article  Google Scholar 

  37. Gravett, A. S., du Plessis, M. C., & Gibbon, T. B. (2017). A distributed ant-based algorithm for routing and wavelength assignment in an optical burst switching flexible spectrum network with transmission impairments. Photonic Network Communications, 34(3), 375–395.

    Article  Google Scholar 

  38. Shuo, L. (2014). Analysis and synthesis of optical burst switched networks.

  39. Battestilli, T., & Perros, H. (2003). An introduction to optical burst switching. IEEE Communications Magazine, 41(8), S10–S15.

    Article  Google Scholar 

  40. Teng, J., & Rouskas, G. N. (2005). Wavelength selection in OBS networks using traffic engineering and priority-based concepts. IEEE Journal on Selected Areas in Communications, 23(8), 1658–1669.

    Article  Google Scholar 

  41. Cao, X., Li, J., Chen, Y., & Qiao, C. (2002, November). Assembling TCP/IP packets in optical burst switched networks. In Global telecommunications conference, 2002. GLOBECOM’02. IEEE (Vol. 3, pp. 2808–2812). IEEE.

  42. Rocha, J. F., Cartaxo, A. T., Silva, H. J., Pinto, J. L., Teixeira, A. L., Gameiro, A. S., et al. (2005). Optical communications research at institute of telecommunications. Fiber and Integrated Optics, 24(3–4), 411–428.

    Article  Google Scholar 

  43. Mitchell, M., Forrest, S., & Holland, J. H. (1992, December). The royal road for genetic algorithms: Fitness landscapes and GA performance. In Proceedings of the first European conference on artificial life (pp. 245–254).

  44. Brest, J., & Maučec, M. S. (2008). Population size reduction for the differential evolution algorithm. Applied Intelligence, 29(3), 228–247.

    Article  Google Scholar 

  45. Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13(2), 398–417.

    Article  Google Scholar 

  46. Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2011). Compact differential evolution. IEEE Transactions on Evolutionary Computation, 15(1), 32–54.

    Article  Google Scholar 

  47. Islam, S. M., Das, S., Ghosh, S., Roy, S., & Suganthan, P. N. (2012). An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 482–500.

    Article  Google Scholar 

  48. Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  49. Quoc, N. H., Nhat, V. V. M., & Son, N. H. (2014). Group scheduling for multi-channel in OBS networks. REV Journal on Electronics and Communications, 3(3–4), 134–137.

    Google Scholar 

  50. Teng, J., & Rouskas, G. N. (2005). A detailed analysis and performance comparison of wavelength reservation schemes for optical burst switched networks. Photonic Network Communications, 9(3), 311–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veparala Kishen Ajay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.K.A., Reddy, K.S. & Prasad, M.G. Optical Burst Routing by Balanced Wavelength Allocation Under Multi-objective Quality Metrics. Wireless Pers Commun 107, 1093–1114 (2019). https://doi.org/10.1007/s11277-019-06326-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06326-w

Keywords

Navigation