Skip to main content
Log in

Serial Decoding Algorithm with Continuous Backtracking for LDPC Convolutional Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Two main decoding algorithms are usually used for low-density parity-check convolutional (LDPC-C) codes, belief propagation algorithm and on-demand variable node activation algorithm. However like the decoding for block codes, the iterations of these algorithms cannot utilize the messages of newly joined variable nodes within the next iteration windows continuously, limiting the decoding performance. Thus a serial decoding algorithm with continuous backtracking for LDPC-C codes is proposed. Based on the iteration windows, the proposed algorithm performs advance iteration with two adjacent iteration windows and then backtracks to the preceding iteration window. During each iteration the latest updated and newly joined messages are utilized. The whole iteration uses the backtracking continuously until all the results output. Different LDPC-C codes are used to test the performance of proposed algorithm. Simulation results show that the proposed algorithm outperforms other algorithms and requires less number of iterations, improving the decoding convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Felstrom, A. J., & Zigangirov, K. S. (1999). Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Transactions on Information Theory, 45(6), 2181–2191.

    Article  MathSciNet  MATH  Google Scholar 

  2. Pusane, A. E., Felstrom, A. J., Sridharan, A., Lentmaier, M., Zigangirov, K. S., & Costello, D. J., Jr. (2008). Implementation aspects of LDPC convolutional codes. IEEE Transactions on Communications, 56(7), 1060–1069.

    Article  Google Scholar 

  3. IEEE. (2010). IEEE standard for broadband over power line networks: Medium access control and physical layer specifications, IEEE Std. 1901.

  4. Pusane, A. E., Zigangirov, K. S. & Costello, D. J. Jr. (2006). Construction of irregular LDPC convolutional codes with fast encoding. In Proceedings of IEEE International Conference on Communications (ICC) (pp. 1160–1165).

  5. Lentmaier, M., Prenda, M. M. & Fettweis, G. P. (2011). Efficient message passing scheduling for terminated LDPC convolutional codes. In Proceedings of IEEE International Symposium on Information Theory (ISIT) (pp. 1826–1830).

  6. Iyengar, A. R., Papaleo, M., Siegel, P. H., Wolf, J. K., Vanelli-Coralli, A., & Corazza, G. E. (2012). Windowed decoding of protograph-based LDPC convolutional codes over erasure channels. IEEE Transactions on Information Theory, 58(4), 2303–2320.

    Article  MathSciNet  MATH  Google Scholar 

  7. Koike-Akino, T., Draper, S. C., Wang, Y., Sugihara, K., Matsumoto, W., Millar, D. S., Parsons, K., Arlunno, V., & Kojima, K. (2016). Optimal layered scheduling for hardware-efficient windowed decoding of LDPC convolutional codes. In Proceedings of 42nd European Conference on Optical Communication (ECOC 2016) (pp. 1–3).

  8. Lin, C.-L., Liu, R.-J., Chen, C.-L., Chang, H.-C., & Lee, C.-Y. (2016). A 7.72 Gb/s LDPC-CC decoder with overlapped architecture for pre-5G wireless communications. In Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp. 337–340).

  9. Chen, Y., Zhang, Q., Wu, D., Zhou, C., & Zeng, X. (2014). An efficient multirate LDPC-CC decoder with a layered decoding algorithm for the IEEE 1901 standard. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(12), 992–996.

    Article  Google Scholar 

  10. Pisek, E., Rajan, D., Abu-Surra, S., & Cleveland, J. R. (2017). Capacity-approaching TQC-LDPC convolutional codes enabling power-efficient decoders. IEEE Transactions on Communications, 65(1), 1–13.

    Article  Google Scholar 

  11. Wang, H., & Kim, S. (2017). Soft convolutional codes decoding algorithm for concatenated codes in visible light communication. Wireless Personal Communications, 97, 6357–6367.

    Article  Google Scholar 

  12. Payommai, T., & Chamnongthai, K. (2017). Non-binary tail-biting LDPC convolutional code encoding for image transmission. Wireless Personal Communications, 97, 4343–4364.

    Article  Google Scholar 

  13. Li, E., Dong, L., & Lei, J. (2018). High rate APPS and Bi-APPS LDPC codes design with low error floor and large girth. Wireless Personal Communications, 100, 709–720.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the application of China national terrestrial digital TV system research (The 2nd generation) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Xu, B. Serial Decoding Algorithm with Continuous Backtracking for LDPC Convolutional Codes. Wireless Pers Commun 107, 1823–1833 (2019). https://doi.org/10.1007/s11277-019-06359-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06359-1

Keywords

Navigation