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On characteristic functions of products of two random
variables

by

X. Jiang and S. Nadarajah
School of Mathematics, University of Manchester, Manchester M13 9PL, UK
email: mbbsssn2@manchester.ac.uk

Abstract: Motivated by a recent paper published in IEEE Signal Processing Letters, we study the
distribution of the product of two independent random variables, one of them being the standard
normal random variable and the other allowed to follow one of nearly fifty distributions. We give
explicit expressions for the characteristic function of the product. The mathematical derivations
are verified by simulations.
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1 Introduction

Many variables in the real world (including the signal processing area) can be assumed to follow
the normal distribution. That is, we can write U = u+ 00X, where X is a standard normal variable,
1 is the mean and o is the standard deviation. But often the mean and standard deviation are
themselves random variables, so U involves a product of two random variables.

Schoenecker and Luginbuhl (2016) derived the distribution of XY when X is a standard normal
random variable and Y is an independent random variable following either the normal or a gamma
distribution. They expressed the distribution of XY = W say in terms of its characteristic function
dw (t) = E [exp (itW)], where i = \/—1 is the complex unit.

In practice, there is no reason to limit Y to follow either the normal or a gamma distribution.
Y can follow possibly any distribution.

The aim of this note is to derive closed form expressions for the characteristic function ¢y (t)
when X is a standard normal random variable and Y is an independent random variable following
a wide range of other distributions. We consider the following distributions for Y: Pareto distribu-
tion (Pareto, 1964), Moffat distribution (Moffat, 1969), triangular distribution, Argus distribution
(Albrecht, 1990), Cauchy distribution, Student’s ¢ distribution (Gosset, 1908), skewed Student’s ¢
distribution (Zhu and Galbraith, 2010), asymmetric skewed Student’s ¢ distribution (Zhu and Gal-
braith, 2010), half Student’s ¢ distribution, half Cauchy distribution, Rice distribution (Rice, 1945),
symmetric Laplace distribution (Laplace, 1774), Laplace distribution (Laplace, 1774), asymmetric
Laplace distribution (Kozubowski and Podgorski, 2000), Poiraud-Casanova-Thomas-Agnan Laplace
distribution (Poiraud-Casanova and Thomas-Agnan, 2000), Holla-Bhattacharya Laplace distribu-
tion (Holla and Bhattacharya, 1968), McGill Laplace distribution (McGill, 1962), log Laplace distri-
bution, exponential distribution, gamma distribution, reflected gamma distribution (Borghi, 1965),
chi distribution, variance gamma distribution (Madan and Seneta, 1990), normal inverse gamma
distribution, Nakagami distribution (Nakagami, 1960), reciprocal distribution, Maxwell distribu-
tion (Maxwell, 1860), quadratic distribution, uniform distribution, power function distribution,
Rayleigh distribution (Weibull, 1951), exponentiated Rayleigh distribution, beta Rayleigh distri-
bution, normal distribution (de Moivre, 1738; Gauss, 1809), skew normal distribution (Azzalini,
1985), truncated normal distribution, split normal distribution, ¢-Gaussian distribution (Tsallis,



2009), half-normal distribution, normal exponential gamma distribution, folded normal distribution
(Leone et al., 1961), Wigner semicircle distribution, Kumaraswamy distribution (Kumaraswamy,
1980), linear failure rate distribution (Bain, 1974) and Irwin Hall distribution (Irwin, 1927; Hall,
1927).

Characteristic functions arise in many aspects of signal processing: capacity analysis of adaptive
transmission with space-time block codes (Chauhan and Kumar, 2014); transmit antenna selection
in cooperative communication (Agrawal and Kshetrimayum, 2017); second-order statistics in mul-
tipath fading environments (Dhaka et al., 2018); to mention just a few.

The expressions given in Section 3 are as explicit as possible. They involve various special
functions, including the gamma function defined by

“+o0o
I'(a) = / t7 Lexp (—t) dt
0
for a > 0; the incomplete gamma function defined by
X
~v(a,x) = / t% Lexp (—t) dt
0
for a > 0 and = > 0; the complementary incomplete gamma function defined by
“+o0o
Ia,x) = / t7 L exp (—t) dt
x

for z > 0; the beta function defined by
1
B(a,b) :/ (1 — )P tdt
0
for a > 0 and b > 0; the incomplete beta function defined by
Bu(a,b) :/ 11 — 1)Ly
0

for 0 <x <1,a >0 and b > 0; the error function defined by

erf(z) = \37? /OI exp (—t2) dt

for > 0; the complementary error function defined by

@ = [ e (1)
erfc(z) = / exp (—t°) dt
VT s
for —oo < & < +00; the parabolic cylinder function of order v defined by

exp (—x2/4)
I'(—v/2)

v—1

too
D,(z) = /0 72 H142t) 2 exp (fsvzt) dt

for v < 0 and 22 > 0; the Whittaker W function of orders v,  defined by
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for p —v > —% and z > 0; the modified Bessel function of the first kind of order v defined by

+oo
1 T\ 2k+v
0= et ()
(z) kZ:O T(k+v+ 1)kl \2
the modified Bessel function of the second kind of order v defined by
S @)~ L), i ¢ 2
Ky(z) =
&%Ku(w), if v € Z;

the confluent hypergeometric function defined by

+0o0

1F1(a; B3 m) = Z

k=0

(@)g zF

(B kY

where (o) = a(a+ 1) - (a+ k — 1) denotes the ascending factorial; the Gauss hypergeometric
function defined by

+o0 k
R <SR
2F1(a7187'77 )_kz;) (V)k k“

the standard normal density function defined by

P(z) = \/127 exp (_:;;22) ;

and the standard normal distribution function defined by

o= [ e (.

These special functions are well known and well established in the mathematics literature. Some
details of their properties can be found in Prudnikov et al. (1986) and Gradshteyn and Ryzhik
(2000). In-built routines for computing them are available in packages like Maple, Matlab and
Mathematica. For example, the in-built routines in Mathematica for the stated special func-
tions are: GAMMA[a] for the gamma function; GAMMA[a]-GAMMA[a,x] for the incomplete gamma
function; GAMMA[a,x| for the complementary incomplete gamma function; Beta[a,b] for the beta
function; Beta[x,a,b] for the incomplete beta function; Erf[x] for the error function; Erfc[x| for the
complementary error function; ParabolicCylinderD[nu,x| for the parabolic cylinder function; Whit-
taker[nu,mu,x] for the Whittaker W function of orders v, u; Bessell[nu,x] for the modified Bessel
function of the first kind of order v; BesselK[nu,x] for the modified Bessel function of the second kind
of order v; HypergeometriclF1[alpha,beta,x] for the confluent hypergeometric function; Hypergeomet-
ric2F1[alpha,beta,gamma,x] for the Gauss hypergeometric function; PDF[NormalDistribution[0,1],x]
for the standard normal density function; CDF[NormalDistribution[0,1],x] for the standard normal
distribution function. Mathematica like other algebraic manipulation packages allows for arbitrary
precision, so the accuracy of computations is not an issue.

The contents of this note are organized as follows. Section 2 provides simple derivations of
the characteristic functions due to Schoenecker and Luginbuhl (2016). Section 3 lists explicit
expressions for ¢y (t) for nearly fifty distributions for Y. The derivations of these expressions are
not given and can be obtained from the corresponding author. Section 4 presents simulation results
that verify correctness of the expressions in Section 3. The note concludes with Section 4.




2 Simpler derivations for normal and gamma cases

In this section, we present simpler derivations of the characteristic function of W = XY when: i) X
is a standard normal random variable and Y is an independent normal random variable with mean
u and standard deviation o; ii) X is a standard normal random variable and Y is an independent
gamma random variable with shape parameter o and scale parameter 5. For any distribution of
Y, we can write

2v2
dw (1) = B [exp(itW)] = E [exp(itXY)] = E{E [exp(itXY) | Y]} = E {exp <_t : ) } |

If Y is a normal random variable with mean p and standard deviation o then

o) = o [ ew[-HE -,

210 J_oo 2 202

1 ‘/“0 (022 + 1)y — 2uy + 42
= exp | — 5
270 J—o0o 20

1 { 22 } /oo o?t? +1 ( M )2
= exXp | ————— exp | — —
g ¥ 20022 +1)%] ) P 202 Yoo

1 w2 }

dy

B a%2+1@®[_2@%2+n

where the last step follows from the fact that any probability density function must integrate to
one. If Y is a gamma random variable with shape parameter a and scale parameter 5 then

a > 2,2 a 2
onr= i o (== (3 o (30 (3)

where the last step follows by direct application of equation (2.3.15.3) in Prudnikov et al. (1986,
volume 1).
3 Expressions for characteristic functions

In this section, we list explicit expressions for ¢y (t) when X is a standard normal random variable
and Y is an independent random variable following nearly fifty other distributions.
Pareto distribution (Pareto, 1964): For this distribution,

fr(y) = aKy 1,

o K2
ow(t) = ako2- 57120 [~ 2,
2 2
fory > K >0 and a > 0.
Moffat distribution (Moffat, 1969): For this distribution,
—B
B-1 Y’
(B8 — 1)a2(B-1y26-1 202 202
t) = K
ow(®) 9B+35 xp 4 0 4



fory >0, a>0and 58> 1.
Triangular distribution: For this distribution,

( 2(y—a)

_ 2"
(b—a)(c—a)’ ITra<y<ec,

fr(y) = 2(b -y o<y <b
b-a)b—c Y=Y
0, elsewhere,

_t2(b—a2)(b—c) [eXp <_t2262_t22b?>]
2 2 2.2
262 272
imatma (%) (3T )
for a <y < b.

Argus distribution (Albrecht, 1990): For this distribution,
3

_ a a? Y2 2
fY(y) - WQXP |:—2 <1 — c2>:| Y 1— 672’
a? a2 5 a2 — 22
ow(t) = mexp <—2> 1F1 <1; 5 2)
(

for 0 <y < cand a > 0, where ¥(x) = ®(x) — z
Cauchy distribution: For this distribution,

_ v
fY(y) - T (72 T y2)7

_ vt ’}/QtQ ’)/2t2
owt) = 2 ex (4) K, <4)

for —oo <y < 400 and v > 0.
Student’s t distribution (Gosset, 1908): For this distribution,

l/+1

1/+1
i
2

G 2>2 f; ((;) . < 4t) X, (a4t>

for —oco < y < 400, ¥ > 0 and ¢ > 0.
Skewed Student’s t distribution (Zhu and Galbraith, 2010): For this distribution,

KW+ * . ify<o,
fr(y) =

_v+1

(ﬂf®f] T ity >0,

5

=

K@ﬂkk



Fhos vt exp (2va2t2) Ky (2Va2t2)

22711 — )" exp (2v(1 - a)2t2) Ko (2v(1 — a)2t2)

ow(t) = K(v)t'v

+Kw)t'v 2

for—oo<y<+oo,u>0and0<a<1,whereK(u):%ZF7w.
Asymmetric skewed Student’s ¢ distribution (Zhu and Galbraith, 2010): For this distribution,

_ntl

skt T <o

fr(y) =

vo+1
1-a 1 v \?| 2 .
T—a~ (VQ) 1 + E (2(17&*)) ) lf Yy > 07

L4l

dw () = oK ()t ()" (2v1)2 T exp <21/1 (a*)2t2> Ky <21/1 (a*)? t2>

v2

F(1— a)K (1) "2 (1 — a*)™ (209) T exp (2u2 ()2 t2) Ko (2u2 ()2 t2)

for —c0o < y < 400, 1 >0, 0 >0and 0 < a < LWhﬂ@K(u)z%anda*:
aK(v1)

aK()+(1—a)K(v2)"
Half Student’s ¢ distribution: For this distribution,

_ () T
el (45h) V22 V22
¢W(t) = \/7?2%F (%2) €xXp <2> 0 < 5 >

for y > 0 and v > 0.
Half Cauchy distribution: For this distribution,

2 0
fr(y) = %ma

to o’t? o’t?
t) = ex Ko | —
o012 27 () 1o (72)
for y > 0 and o > 0.
Rice distribution (Rice, 1945): For this distribution,

2 2
fr(y) = %EXP <—y+y> Iy (%) 7

202

(1) 1 V22
W 1+ 0262 P | 721 1 022

for y > 0,0 >0and v > 0.
Symmetric Laplace distribution (Laplace, 1774): For this distribution,




for —oo <y < 400 and A > 0.
Laplace distribution (Laplace, 1774): For this distribution,

i) = gyew (1511,

R 1 i 1
ow(t) = NI exp (2b2t2 - b> erfc (_\/§bt>

1 1 w1l ut? ubt?> — 1
- 2y =\ p (==
20t P [4b2t2 2 (b T3 )] 1( t

1 1 w1 put? pbt? + 1
_ 24y \|lp (===
Top P [4b2t2 2 < b2 >] 1< ¢

for —oco < y < 400, —00 < p < 400 and b > 0.
Asymmetric Laplace distribution (Kozubowski and Podgorski, 2000): For this distribution,

A .
1 €xXp |:I€(y m):| ) lfy <m,

K

exp [Ak(y —m)], ify>m,

V2T A A2
ow(t) = MGXP <_;n + 2&2752)

K

A A mx mNT A
(/i—l—l)t P 4Kk2t2 2 \ k 2 -1 Kt

K

A e >\2ﬁ2—m —/\/i+m—t2 D mt+ﬁ
A R 2 - t

for —oo <y < 400, —co <m < 400, A >0 and k > 0.
Poiraud-Casanova-Thomas-Agnan Laplace distribution (Poiraud-Casanova and Thomas-
Agnan, 2000): For this distribution,

a(l—a)exp{(1—a)(y—0)}, ify<o,

_l’_

fr(y) =
a(l—a)exp{a(@—1y)}, ify >0,
2 o 2 o 2
owl) = YT e a1 - g+ U
ol -« 1—a)? 1—a) 0% 11—«
S P (A P ey
a(l —a) o?  afl 0?2 o'
+teXp[4t2+2_2] D1 (0t +5)

for —oo <y < 400, —co < < 4ooand 0 < a < 1.
Holla-Bhattacharya Laplace distribution (Holla and Bhattacharya, 1968): For this distribu-
tion,

agexp {¢(y —0)}, if y <0,
Ty(y) =
(1—a)pexp{p(0—y)}, ify>0,
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2
dw(t) = \/?a(b exp <—e¢ + ¢>

2t2
ad 02 0 02 o
T e <4t2 . 2> D-1 (“‘ t>
1—a)p 0 0y 02 ¢
1) ta) exp <4t2 +5 - 2) D_, <9t + t>

for —co <y < 400, —co <O <400, ¢ >0and 0 < a < 1.
McGill Laplace distribution (McGill, 1962): For this distribution,

1 —40
5. €Xp <y>a 1fy Sea

29 (0
y(y) = . 0
—y '
%exp <¢), if y >4,
R 0 1
dw(t) = \[thexl) <_¢ + 2¢2t2>

1 IR NN P
opt P\ g2z T2y T T2 )7 ot

20t P \ag22 T2y 2 )T ot

for —oo <y < 400, —00 < 0 < 400, ¢ > 0 and ¥ > 0.
Log Laplace distribution: For this distribution,

yvLexp (—%) , ify <y,

ry) =5
20 L_q H
y b oexp (g) ify > p,
242 242
T T B ) (_g) 1 pt P DR (g) 1ot
ow(t) =b "t 222 “exp 3 7(2()’ 5 +b ' tv27 28 “exp 3 r T

for y >0, b> 0 and p > 0.
Exponential distribution: For this distribution,

Ty (y) = Aexp(—Ay),

T A2 A
ow(t) = NG exp | o3 erfc 7o
for y > 0 and A\ > 0.

Gamma distribution: For this distribution,

«

friy) = ng)ya—l exp(—By),

= (Y () ()

fory >0, a>0and 8> 0.



Reflected gamma distribution (Borghi, 1965): For this distribution

My):25a [y

exp(—=Blyl),

0= (o (2)0-()

for —oco <y < 400, >0 and 5 > 0.
Chi distribution: For this distribution

for y > 0 and k£ > 0.

Variance gamma distribution (Madan and Seneta, 1990): For this distribution

_ o[ -1 a
frly) = AT (2a)3 [y 1772 Ky _i(afy ),

ow(t) =T ('j;t‘)A o (G2) W0 (50)

for —oo <y < 400, —00 < o < +00 and A > 0.
Normal inverse gamma distribution: For this distribution

Vg 28+ Ay — p)?
fY(y)—meXP R

N VaBe 1 28 + A A p?
dw(t) = o220 () /o 2t2 + \ P [_ 202 2(M+ 02t2)]

for —co <y < +00, A>0,a>0and g > 0.
Nakagami distribution (Nakagami, 1960): For this distribution

_ 2m™ 2m—1 my2
fY(y) - er(m)y €xXp |: Q s

Pw(t) = Qm <t2 - 73) -

fory >0, m > 0 and 2 > 0.
Reciprocal distribution (Hamming, 1970): For this distribution

for 0 < a <y < b, where C' denotes the normalizing constant



Maxwell distribution (Maxwell, 1860): For this distribution,

for y > 0 and a > 0.
Quadratic distribution: For this distribution,

fr(y) = aly — B)?,
V2« 3 t2a2 3 22
a0 =50 1 (3:5) - (37|
2a03 t2a? 262
() e (1)
aB? 1 t2a? 1 t20?
Y7 [P (2’2) -t (m)]

for—oo<a<y<b<+oo,whereB:aT+banda:

Uniform distribution: For this distribution,

o= (35 ) - (375)]

for —co<a<y <b< +o0.
Power function distribution: For this distribution,

(b—a)"

a—1

fy(y) =ay" ",
2
dw (t) = a22 1ty <;7 7;)

for 0 <y <1anda>0.
Rayleigh distribution (Weibull, 1951): For this distribution,

fr(y) =2 yexp (—A*?)
22
i =

for y > 0 and A > 0.
Exponentiated Rayleigh distribution (Kundu and Ragab, 2005): For this distribution,

fy(y) = 2aX\*yexp (—/\2y2) [1—exp (—A2y2)]a_1 ,

t2
ow(t) = aB <1 + 2)\2,a>

fory >0, a>0and A > 0.
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Beta Rayleigh distribution (Kundu and Raqgab, 2005): For this distribution,

2
o) = e (<50%2) [1 —exp (-X2)]" "

L p(s+ L

—_ —.

Bla, B) 2N

fory >0, a>0,8>0and A > 0.

Normal distribution (de Moivre, 1738; Gauss, 1809): For this distribution,

_ 1 (y — p)?
) = e |-U ).
1 prt?
B S Y i
Pe 1 P 202 1)

for —oco < y < 400, —00 < p < 400 and o > 0.
Skew normal distribution (Azzalini, 1985): For this distribution,

2 2 A
fy(y) = 5 P (—2‘122> P <Uy> ;

1
ty=m —
dw (1) PRI

ow(t) =

dw(t) =

for —oco < y < 400, —00 < A < 400 and ¢ > 0.
Truncated normal distribution: For this distribution,

- 1 o [ =1
fr(y) = 2%0[@(%)—@(%)} p[ 202 ]7

@ (b(02t2+1) M) % (a (02t2+ 1) u)
ovVaolt2 +1 oVaolt2 +1 prt?
Varo [q) (b_u>—¢><a_u)] o [_2(02t2+1>}

g g

dw(t) =

for —oo < y < 400, —00 < p < 400 and o > 0.
Split normal distribution: For this distribution,

(y—w?] .
exp [—%‘% ity <,
fy(y)=C ,
(y — ) .
exp [—%‘g , ify > p,
V2rnCo 242
dw(t) = YTl exp |-
o2 41 2 (203 4+ 1)

Coq . < 2t 202 + 2> D pot?
———exp| ——— 55— e
Vo241 4 20 +1 o324+ 1
C 2124252 4 9 12
T2 exp <_Mvz+> D, [t

_\/ogtz—&—l 4 t203+1 o3tz +1
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for —0o < y < 400, —00 < p < 400, 01 > 0 and g9 > 0, where C' denotes the normalizing constant.
g-Gaussian distribution (Tsallis, 2009): For this distribution,

o) =P - gpy T,

C
V2B [2(q - 1)8] T4 2 2 .
Ct [ 2 ] P [4@—1)6] Ko (4@—1)5)’ hsa<s

ow(t) =

1 1 2—¢q 11 2—¢q t? ,
— B, —* ) 1F (== : , ifg<1
CVv1—g¢ (2’1—q>11<2 2 1oy 2(1—61)5) ne

for —co <y < 4ooif 1 <gq<3, ifg<1and g >0.

1 1
Jiio “YV <t

Half-normal distribution: For this distribution,

21 2
W=y 2 e (~5z),
1
W)= e

for y > 0 and o > 0.
Normal exponential gamma distribution: For this distribution,

2
fy(y) = Cexp <-j€2> D_o1 4 (g‘) ,

1
dw (t) = Cy/mo2~Fr—1 <k + 2) o Fy <2, 1k + ;; —t292>

for —oo <y < 400, k> 0 and 8 > 0, where C' denotes the normalizing constant.
Folded normal distribution (Leone et al., 1961): For this distribution,

fy(y) = ;m {eXp [—W} + exp [—W} }

242

uet
t) = e T ——
dw(t) eXp( o—2t2+1>

for —oo <y < 400, —00 < p < 400 and ¢ > 0.
Wigner semicircle distribution: For this distribution,

2y/R? — y?

fr(y) = TJJ,
2 p2
ow(t) =111 (2;2; tf)

for —R <y < R.
Kumaraswamy distribution (Kumaraswamy, 1980): For this distribution,

fr(y) =2ay (1—¢*)" ",

ow (t) = a (—2t*) " exp (—t;) ¥ <a, —t;)

12



for 0 <y <1 anda>0.
Linear failure rate distribution (Bain, 1974): For this distribution,

fy(y) = (a+by) exp (—ay - b'f) :

Ho @ o D ¢ a a” D ¢
ow(t) = b+tzeXp[4(b+t2)} 1<\/m>+b+t2“p[4(b+t2)} 2<¢m2>

for y >0,a >0 and b > 0.
Irwin Hall distribution (Irwin, 1927; Hall, 1927): For this distribution,

fr(y) = 20n 1_ 01 k;(—l)’“ (Z) (y — k)" 'sign(y — k),
it = gy V() > (", et (M)

for 0 <y <nandn>1.

4 Simulation results

In this section, we perform simulations to check the mathematical derivations in Section 3. We
simulated the distribution of W for given distributions of X and Y as follows:

1. simulate 1000 random numbers from the distribution of X;
2. simulate 1000 random numbers from the distribution of Y;
3. set W = XY;

4. construct a histogram of the 1000 values of W.

The simulated histograms can be compared to the theoretical probability density functions of W
computed using the characteristic functions in Section 3.

The comparisons are illustrated in Figures 1 to 5 for five of the distributions of Y considered in
Section 3: Figure 1 for the exponential distribution; Figure 2 for the uniform distribution; Figure
3 for the power function distribution; Figure 4 for the Rayleigh distribution; Figure 5 for the
exponentiated Rayleigh distribution.

13
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Figure 1: Simulated histogram and theoretical probability density function of W = XY when X is
a standard normal random variable and Y is an independent unit exponential random variable.

14



o |
N
:5 —
o
g v
§\—|
o
(O]
£
©
c
e 2
(GH
g
(@)
g
0
=
K
Te)
8 S
p}
£
(7]
o |
o
| [ [ [ [ [ [
-3 -2 -1 0 1 2 3
w

Figure 2: Simulated histogram and theoretical probability density function of W = XY when X is
a standard normal random variable and Y is an independent uniform [0, 1] random variable.
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Figure 3: Simulated histogram and theoretical probability density function of W = XY when X is
a standard normal random variable and Y is an independent power function random variable with
a=2.
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Figure 4: Simulated histogram and theoretical probability density function of W = XY when X is
a standard normal random variable and Y is an independent Rayleigh random variable with A = 1.
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Figure 5: Simulated histogram and theoretical probability density function of W = XY when X
is a standard normal random variable and Y is an independent exponentiated Rayleigh random
variable with a =2, A = 1.

We see that the simulated histogram and the theoretical probability density function agree
well in each of the five figures. We have considered the five distributions for illustration. But the
conclusions were the same for other distributions in Section 3.

5 Conclusions

Motivated by Schoenecker and Luginbuhl (2016), we have derived explicit expressions for the char-
acteristic function of the product of two independent random variables, one of them being the
standard normal random variable and the other allowed to follow one of nearly fifty distribu-
tions. The explicit expressions involved the gamma, incomplete gamma, complementary incomplete
gamma, beta, incomplete beta, error, complementary error, parabolic cylinder, Whittaker W, mod-
ified Bessel, confluent hypergeometric, Gauss hypergeometric and the standard normal distribution
functions. The mathematical derivations have been verified by simulations.
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