Skip to main content
Log in

Structured Compressive Sensing Based Block-Sparse Channel Estimation for MIMO-OFDM Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a compressive sensing based method named Priori-Information Aided Modified-SAMP algorithm is proposed to solve the problem of channel estimation in MIMO-OFDM systems. Firstly, coarse channel state information (CSI) as a priori-information of channel is obtained by using the complete pseudo-random noise (PN) sequences. Due to noise and the interference among antennas caused by the non-orthogonality of PN sequences, then, the accuracy of channel estimation is not so high that the priori-information aided modified-SAMP algorithm based on the obtained CSI is proposed to estimate CSI more accurately in temporal domain. Though the proposed method is based on the sparsity adaptive matching pursuit (SAMP) algorithm, there are some significant differences with each other in signal structure, support set selection, and adaptive step size etc. Theoretical analysis shows that the proposed algorithm has good convergence, moderate computational complexity and less training sequence overhead. Finally, the performance of the proposed method is verified through experimental simulations which show that compared with other algorithms, especially the orthogonal matching pursuit algorithm, the proposed algorithm not only improves the estimation accuracy but also greatly reduces the training sequence overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ozdemir, M. K., & Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Communications Surveys and Tutorials, 9(2), 18–48. (second quarter).

    Article  Google Scholar 

  2. Larsson, E. G., Tufvesson, F., Edfors, O., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  3. Marzetta, T. L. (2015). Massive MIMO: An introduction. Bell Labs Technical Journal, 20, 11–12.

    Article  Google Scholar 

  4. Dai, L., Wang, Z., & Yang, Z. (2013). Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems. IEEE Journal on Selected Areas in Communications, 31(2), 251–263.

    Article  Google Scholar 

  5. Bajwa, W., Haupt, J., Sayeed, A., & Nowak, R. (2010). Compressed channel sensing: A new approach to estimating sparse multipath channels. Proceedings of the IEEE, 98(6), 1058–1076.

    Article  Google Scholar 

  6. Choi, J. W., Shim, B., Ding, Y., Rao, B., & Kim, D. I. (2017). Compressed sensing for wireless communications: Useful tips and tricks. IEEE Communications Surveys and Tutorials, 19(3), 1527–1550. (third quarter).

    Article  Google Scholar 

  7. Tropp, Joel A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.

    Article  MathSciNet  Google Scholar 

  8. Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    Article  MathSciNet  Google Scholar 

  9. Do, T., Lu, G., Nam, N., & Tran, T. (2008). Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In Proceedings of 42nd Asilomar conference on signals, systems, and computers, Pacific Grove, CA, USA, Oct 2008 (pp. 581–587).

  10. Dai, Linglong, Wang, Zhaocheng, & Yang, Zhixing. (2013). Compressive sensing based time domain synchronous OFDM transmission for vehicular communications. IEEE Journal on Selected Areas in Communications, 31(9), 460–469.

    Article  Google Scholar 

  11. Dai, L., & Wang, J. (2013). Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction. IEEE Transactions on Signal Processing, 61(23), 6047–6059.

    Article  MathSciNet  Google Scholar 

  12. Ding, Wenbo, Yang, Fang, Dai, Wei, & Song, Jian. (2015). Time–frequency joint sparse channel estimation for MIMO-OFDM systems. IEEE Communications Letters, 19(1), 58–61.

    Article  Google Scholar 

  13. Gao, Z., Dai, L., Wang, Z., & Chen, S. (2015). Priori-information aided iterative hard threshold: A low-complexity high-accuracy compressive sensing based channel estimation for TDS-OFDM. IEEE Transactions on Wireless Communications, 14(1), 242–251.

    Article  Google Scholar 

  14. Rao, X., & Lau, V. K. N. (2015). Compressive sensing with prior support quality information and application to massive MIMO channel estimation with temporal correlation. IEEE Transactions on Signal Processing, 63(18), 4914–4924.

    Article  MathSciNet  Google Scholar 

  15. Ding, W., Yang, F., Liu, S., & Song, J. (2016). Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems. IET Communs, 10(6), 685–690.

    Article  Google Scholar 

  16. Gao, Z., Dai, L., Wang, Z., Dai, W., Shim, B., & Wang, Z. (2016). Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO. IEEE Transactions on Communications, 64(2), 601–617.

    Article  Google Scholar 

  17. Duarte, M., & Eldar, Y. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing, 59(9), 4053–4085.

    Article  MathSciNet  Google Scholar 

  18. Wimalajeewa, Thakshila, Eldar, Yonina C., & Varshney, Pramod K. (2015). Subspace recovery from structured union of subspaces. IEEE Transactions on Information Theory, 61(4), 2101–2114.

    Article  MathSciNet  Google Scholar 

  19. Stojnic, M., Parvaresh, F., & Hassibi, B. (2008). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Transactions on Signal Processing, 59(9), 3075–3085.

    MathSciNet  MATH  Google Scholar 

  20. Eldar, Yonina C., Kuppinger, Patrick, & Bölcskei, Helmut. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 58(6), 3042–3054.

    Article  MathSciNet  Google Scholar 

  21. Wan, F., Zhu, W. P., & Swamy, M. N. S. (2010). Semi-blind most significant tap detection for sparse channel estimation of OFDM systems. EEE Transactions on Circuits and Systems, 57(3), 703–713.

    Article  MathSciNet  Google Scholar 

  22. Telatar, I., & Tse, D. (2000). Capacity and mutual information of wideband multipath fading channels. IEEE Transactions on Information Theory, 46(4), 1384–1400.

    Article  MathSciNet  Google Scholar 

  23. Zhang, Y., Venkatesan, R., Dobre, O. A., & Li, C. (2016). Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme. IEEE Transactions on Wireless Communications, 15(4), 2590–2603.

    Article  Google Scholar 

  24. Han, Yonghee, Lee, Jungwoo, & Love, David J. (2017). Compressed sensing-aided downlink channel training for FDD massive MIMO systems. IEEE Transactions on Communications, 65(7), 2852–2862.

    Article  Google Scholar 

  25. Li, C.-P., & Huang, W.-C. (2007). A constructive representation for the fourier dual of the Zadoff-Chu sequences. IEEE Transactions on Information Theory, 53(11), 4221–4224.

    Article  MathSciNet  Google Scholar 

  26. Zhou, Xiao, Yang, Fang, & Song, Jian. (2012). Novel transmit diversity scheme for TDS-OFDM system with frequency-shift m-sequence padding. IEEE Transactions on Broadcasting, 58(2), 317–324.

    Article  Google Scholar 

  27. Ma, Xu, Yang, Fang, Ding, Wenbo, & Song, Jian. (2016). Novel approach to design time-domain training sequence for accurate sparse channel estimation. IEEE Transactions on Broadcasting, 62(3), 512–520.

    Article  Google Scholar 

  28. Chen, Jie, & Huo, Xiaoming. (2006). Theoretical results on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(12), 4634–4643.

    Article  Google Scholar 

  29. Gao, Zhen, Dai, Linglong, Wang, Zhaocheng, & Chen, Sheng. (2015). Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Transactions on Signal Processing, 63(23), 6169–6183.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Nos. 61571364, 61401360, Innovation Foundation for Doctoral Dissertation of Northwestern Polytechnical University under Grant CX201833 and Fundamental Research Funds for the Central Universities 3102014JCQ01055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 1

Before proving Theorem 1, we will introduce the following Lemmas.

Lemma 1

[13, 14] For disjoint support\({{{\mathcal{T}}}}_{1}\),\({{{\mathcal{T}}}}_{2}\)where\(\left| {{{{\mathcal{T}}}}_{1} } \right| \le S_{1}\),\(\left| {{{{\mathcal{T}}}}_{2} } \right| \le S_{2}\), \({{{\mathcal{T}}}}_{1} \cap {{{\mathcal{T}}}}_{2} = \emptyset\), the chunk sparse matrix\({\tilde{\mathbf{H}}}\)with support set\({{{\mathcal{T}}}}_{1}\)has the following inequality condition

$$\text{If}\;S_{1} \le S_{2} ,\;\text{then},\;\delta_{{S_{1} }} \le \delta_{{S_{2} }} .$$
(40)
$$\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }}^{H} {\mathbf{\tilde{\Psi }\tilde{H}}}} \right\|_{F} = \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }}^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} \le \delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right| + \left| {{{{\mathcal{T}}}}_{2} } \right|}} \left\| {{\tilde{\mathbf{H}}}} \right\|_{F} .$$
(41)
$$\left( {1 - \frac{{\delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right| + \left| {{{{\mathcal{T}}}}_{2} } \right|}} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{2} } \right|}} } \right)} }}} \right)\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} \le \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} \le \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} .$$
(42)
$$\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{1} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} \le {{\delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right| + \left| {{{{\mathcal{T}}}}_{2} } \right|}} } \mathord{\left/ {\vphantom {{\delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right| + \left| {{{{\mathcal{T}}}}_{2} } \right|}} } {\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{2} } \right|}} } \right)} }}} \right. \kern-0pt} {\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{1} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}_{2} } \right|}} } \right)} }}\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{2} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}_{2} }} } \right\|_{F} .$$
(43)

Lemma 2

[14] Suppose that\(\sigma_{\hbox{min} } \left( {\mathbf{A}} \right)\)and\(\sigma_{\hbox{max} } \left( {\mathbf{A}} \right)\)represents the maximum and minimum singular values of\({\mathbf{A}}\), respectively, we have

$$\sigma_{\hbox{min} } \left( {\mathbf{A}} \right)\left\| {\mathbf{B}} \right\|_{F} \le \left\| {{\mathbf{AB}}} \right\|_{F} \le \sigma_{\hbox{max} } \left( {\mathbf{A}} \right)\left\| {\mathbf{B}} \right\|_{F}$$
(44)

The proof of Theorem 1: According to the orthogonal projection theorem, we have

$$\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} = {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} = 0$$
(45)

Using the above formula, the unequal relationship between \(\left\| {{\mathbf{R}}^{k} } \right\|_{F}\) and \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F}\) is expressed as

$$\begin{aligned} \left\| {{\mathbf{R}}^{k} } \right\|_{F} &= \left\| {{\mathbf{Y}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} {\mathbf{\bar{\tilde{H}}}}_{{{{{\mathcal{T}}}}^{k} }}^{k} } \right\|_{F} = \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right)} \right.\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}}} + {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right) + \left. {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right){\mathbf{N}}} \right\|_{F} \\ &\le \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right){\mathbf{N}}} \right\|_{F} \\ &\le \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\mathbf{N}} \right\|_{F} \\ &\le \sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} } \right|}} } \left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\mathbf{N}} \right\|_{F} \\ &\le \sqrt {1 + \delta_{S} } \left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(46)

In the above formula, (45) is used in the first inequality and the projection theorem \(\left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k} }} } \right)^{\dag } } \right){\mathbf{X}}} \right\|_{F} \le \left\| {\mathbf{X}} \right\|_{F}\) and Lemma 1 (40) are used in the second inequality and the last inequality, respectively. Similarly, we can obtain the unequal relationship between \(\left\| {{\mathbf{R}}^{k - 1} } \right\|_{F}\) and \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F}\).

$$\begin{aligned} \left\| {{\mathbf{R}}^{k - 1} } \right\|_{F} &= \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right)\left( {{\tilde{\mathbf{\Psi }}}_{{{{\mathcal{T}}}}} {\tilde{\mathbf{H}}} + {\mathbf{N}}} \right)} \right\|_{F} \\ &\ge \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\varPsi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} - \left\| {\left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\mathbf{N}}} \right\|_{F} \\ &\ge \left( {1 - \frac{{\delta_{S} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}^{k - 1} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} } \right|}} } \right)} }}} \right)\left\| {{\tilde{\mathbf{\varPsi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} - \left\| {\mathbf{N}} \right\|_{F} \\ &\ge \frac{{1 - 2\delta_{S} }}{{\sqrt {1 - \delta_{S} } }}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} - \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(47)

Lemma 1 (40) and (45) are adopted in the second and the last inequality. From (46) and (47), we know that the relationship between \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F}\) and \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F}\) must be get for the proof of (31) which will be demonstrated below.

In the step 11, the estimated error \(\Delta {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}^{k} }}\) can be expressed as equality (48) when the effective support is \({{{\mathcal{T}}}}^{k}\) in the \(k\)th iteration.

$$\begin{aligned} \Delta {\mathbf{\tilde{H}}}_{{{{\mathcal{T} }}^{k} }} & = {\mathbf{\bar{\tilde{H}}}}^{k} - {\mathbf{\tilde{H}}}_{{{{\mathcal{T}}}^{k} {{ }}}} \\ & = \left( {{\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T}}}^{k} }} } \right)^{\dag } {\mathbf{Y}} - {\mathbf{\tilde{H}}}_{{{{\mathcal{T}}}^{k} {{}}}} \\ & = \left( {{\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T}}}^{k} }} } \right)^{\dag } \left( {{\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T} }}^{k} }} {\mathbf{\tilde{H}}}_{{{{\mathcal{T} }}^{k} }} + {\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T}}}\begin{array}{*{20}c} {{{\backslash \mathcal{T} }}^{k} } \\ \end{array} }} {\mathbf{\tilde{H}}}_{{{{\mathcal{T}}}\begin{array}{*{20}c} {{{\backslash \mathcal{T} }}^{k} } \\ \end{array} }} + {\mathbf{N}}} \right) - {\mathbf{\tilde{H}}}_{{{{\mathcal{T}}}^{k} {{ }}}} \\ & = \left( {{\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T} }}^{k} }} } \right)^{\dag } {\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T}}}\begin{array}{*{20}c} {{{\backslash \mathcal{T}}}^{k} {{ }}} \\ \end{array} }} {\mathbf{\tilde{H}}}_{{{{\mathcal{T}}}\begin{array}{*{20}c} {{{\backslash \mathcal{T}}}^{k} {{}}} \\ \end{array} }} + \left( {{\mathbf{\tilde{\Psi }}}_{{{{\mathcal{T} }}^{k} }} } \right)^{\dag } {\mathbf{N}} \\ \end{aligned}$$
(48)

Furthermore, the F norm of the correlation matrix of \({\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }}\) and \(\Delta {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}^{k} }}\) is obtained

$$\begin{aligned} \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \Delta {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}^{k} }} } \right\|_{F} &= \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \left( {{\mathbf{\bar{\tilde{H}}}}^{k} - {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}^{k} }} } \right)} \right\|_{F} \\ &= \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} + {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} } \right)^{\dag } {\mathbf{N}}} \right\|_{F} \\ &\ge \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} } \right\|_{F} - \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} } \right)^{\dag } {\mathbf{N}}} \right\|_{F} \\ &\ge \frac{{\delta_{S} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} } \right\|_{F} - \left\| {\mathbf{N}} \right\|_{F} \\ &\ge \frac{{\delta_{S} \left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)}}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} } \right\|_{F} - \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(49)

The establishment of the second inequality in the above formula takes advantage of the formula (43) in Lemma 1. Similarly, in the step 8, the F norm of the correlation matrix of estimated error \(\Delta {\mathbf{Z}}_{{{{{\mathcal{T}} }}_{b}^{k} }}\) and \({\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }}\) satisfies inequality (50) when the effective support is \({{{\mathcal{T}}}}^{k}\) in the \(k\)th iteration.

$$\begin{aligned} \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \Delta {\mathbf{Z}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right\|_{F} &= \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \left( {{\mathbf{Z}}_{{{{{\mathcal{T}} }}_{b}^{k} }} - {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right)} \right\|_{F} \\ &= \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} + {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right)^{\dag } {\mathbf{N}}} \right\|_{F} \\ &\le \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right)^{\dag } {\mathbf{N}}} \right\|_{F} \\ &\le \frac{{\delta_{S} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}_{b}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)} }}\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\mathbf{N}} \right\|_{F} \\ &\le \frac{{\delta_{S} \left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)}}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}_{b}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)} }}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F} + \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(50)

According to step 7 and 10, we have \({{{\mathcal{T}}}}_{b}^{k} \cap {{{\mathcal{T}}}} \subset {{{\mathcal{T}}}}^{k} \cap {{{\mathcal{T}}}}\). Besides, in the light of the definition of the least squares residual, the measurement residuals of support set \({{{\mathcal{T}}}}_{b}^{k}\) and \({{{\mathcal{T}}}}^{k}\) satisfy

$$\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}_{b}^{k} }} \Delta {\mathbf{Z}}_{{{{{\mathcal{T}} }}_{b}^{k} }} } \right\|_{F} \ge \left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}} }}^{k} }} \Delta {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}} }}^{k} }} } \right\|_{F}$$
(51)

Thus, combining (49), (50) and (51), we have the relationship between \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} } \right\|_{F}\) and \(\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F}\).

$$\begin{aligned} \left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}}}}^{k} } \\ \end{array} }} } \right\|_{F} &\le \frac{{\left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}_{b}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)} \left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)}}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F} + \frac{{2\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}{{\delta_{S} \left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)}}\left\| {\mathbf{N}} \right\|_{F} \hfill \\ &= a\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} }} } \right\|_{F} + b\left\| {\mathbf{N}} \right\|_{F} \hfill \\ \end{aligned}$$
(52)

According to steps 6 and 7, we have the following relationship

$$\begin{aligned} \left\| {\left( {{\varvec{\Psi}}_{{{{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| = \left\| {\left( {{\varvec{\Psi}}_{{{{{\mathcal{T}}}}_{a}^{k} \cup {{{\mathcal{T}}}}^{k} }} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| \\ \ge \left\| {\left( {{\varvec{\Psi}}_{{{{{\mathcal{T}}}}_{a}^{k} }} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| \\ \ge \left\| {\left( {{\varvec{\Psi}}_{{{{\mathcal{T}}}}} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| \\ \end{aligned} ,$$
(53)

which means

$$\left\| {\left( {{\varvec{\Psi}}_{{{{{\mathcal{T}}}}_{b}^{k} \begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}} \\ \end{array} }} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| \ge \left\| {\left( {{\varvec{\Psi}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\|$$
(54)

On the other hand, for the F norm of the correlation matrix \(\left( {{\tilde{\mathbf{\varPsi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\mathbf{R}}^{k - 1}\) based on support \({{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}\) obtained in step 6, we have

$$\begin{aligned} \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\|_{F} &= \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} \left( {{\mathbf{Y}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } {\mathbf{Y}}} \right)} \right\|_{F} \\ &\le \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} \left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{\mathcal{T}}}}} {\mathbf{H}}} \right\|_{F} + \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} \left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\mathbf{N}}} \right\|_{F} \\ \end{aligned}$$
(55)

For convenience, we make the following simplification

$$\begin{aligned} \left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\tilde{\mathbf{\Psi }}}_{{{{\mathcal{T}}}}} {\tilde{\mathbf{H}}} &= \left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right)\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} + {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right) \\ &= {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cap {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} \\ &= \left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} ,} & {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \\ { - \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \\ \end{array} } \right] \\ &= {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} \\ \end{aligned}$$
(56)

Submitting (56) into (55), so (55) can be simplified as

$$\begin{aligned} &\left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\mathbf{R}}^{k - 1} } \right\| \le \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} + \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} \left( {{\mathbf{I}} - {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} \left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } } \right){\mathbf{N}}} \right\|_{F} \\ &\quad \le \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} + \sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right|}} } \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(57)

Similarly,

$$\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} \backslash \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\mathbf{R}}^{k - 1} \ge \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} \backslash \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} - \sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} \backslash \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \left\| {\mathbf{N}} \right\|_{F}$$
(58)

Thus, we have

$$\left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} \ge \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} \backslash \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} - 2\sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right|}} } \left\| {\mathbf{N}} \right\|_{F}$$
(59)

For \(\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1}\), the following inequality is hold.

$$\begin{aligned} &\left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} \\ &\quad= \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} \left( {{\tilde{\mathbf{\Psi }}}_{{\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} } \right\}{{\backslash }}\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} } \right\}}} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}_{{\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} } \right\}{{\backslash }}\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} } \right\}}}^{k} + {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} }}^{k} } \right)} \right\|_{F} \\&\quad \ge \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} - \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} } \right\}{{\backslash }}\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} } \right\}}} {\tilde{\mathbf{H}}}_{{\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} } \right\}{{\backslash }}\left\{ {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{\backslash }} \\ \end{array} {{{\mathcal{T}}}}_{b}^{k} } \right\}}}^{k} } \right\|_{F} \\&\quad \ge \sigma_{\hbox{min} } \left( {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} }} } \right)^{H} } \right)\left\| {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} - \delta_{3S} \left\| {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} \\ &\quad\ge \left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} - \delta_{3S} \left\| {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} \\ \end{aligned}$$
(60)

Due to \(\left\{ {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right\} \cap \left\{ {{{{\mathcal{T}}}} \cup {{{\mathcal{T}}}}^{k - 1} } \right\} = \emptyset\), by making use of Lemma 1 we can get

$$\left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}}} } \right)^{H} {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} { \cup {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} \le \delta_{3S} \left\| {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F}$$
(61)
$$\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} \le 2\delta_{3S} \left\| {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} + 2\sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right|}} } \left\| {\mathbf{N}} \right\|_{F}$$
(62)

Besides, it is obvious that \({\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1}\) satisfies the following inequality condition

$$\begin{aligned} \left\| {{\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{H} }}^{k - 1} } \right\|_{F} & \le \left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} + \left\| {\left( {{\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}^{k - 1} }} } \right)^{\dag } {\tilde{\mathbf{\Psi }}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} {\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} \\ & \le \frac{{1 - \delta_{S} + \delta_{2S} }}{{1 - \delta_{S} }}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} \\ \end{aligned}$$
(63)

Combining (61) and (62), the following inequality is obtained

$$\begin{aligned} \left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} \le & \frac{{2\delta_{3S} \left( {1 - \delta_{S} + \delta_{2S} } \right)}}{{\left( {1 - \delta_{S} } \right)}}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} \\ & + \;2\sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right|}} } \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(64)

Thus, we have

$$\begin{aligned} \left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}_{b}^{k} } \\ \end{array} }} } \right\|_{F} & \le \frac{{2\delta_{3S} \left( {1 - \delta_{S} + \delta_{2S} } \right)}}{{\left( {1 - \delta_{S} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)}}\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} + \frac{{2\sqrt {1 + \delta_{{\left| {{{{\mathcal{T}}}}_{b}^{k} \backslash {{{\mathcal{T}}}}} \right|}} } }}{{\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)}}\left\| {\mathbf{N}} \right\|_{F} \\ & = c\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} + d\left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(65)

Substituting Eq. (64) into (52), we can get

$$\left\| {{\tilde{\mathbf{H}}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} }} } \right\|_{F} \le ac\left\| {{\mathbf{H}}_{{{{{\mathcal{T}}}}\begin{array}{*{20}c} {\backslash {{{\mathcal{T}}}}^{k - 1} } \\ \end{array} }} } \right\|_{F} + e\left\| {\mathbf{N}} \right\|_{F}$$
(66)

Combining (46), (47) and (65) we can get

$$\begin{aligned} \left\| {{\mathbf{R}}^{k} } \right\|_{F} & \le \frac{{ac\sqrt {\left( {1 - \delta_{S}^{2} } \right)} }}{{1 - 2\delta_{S} }}\left\| {{\mathbf{R}}^{k - 1} } \right\|_{F} + C_{2} \left\| {\mathbf{N}} \right\|_{F} \\ & = C_{1} \left\| {{\mathbf{R}}^{k - 1} } \right\|_{F} + C_{2} \left\| {\mathbf{N}} \right\|_{F} \\ \end{aligned}$$
(67)
$$\left\| {{\tilde{\mathbf{H}}} - {\mathbf{\hat{\tilde{H}}}}^{k} } \right\|_{F} \le C_{3} \left\| {\mathbf{N}} \right\|_{F}$$
(68)

Below, we will prove that there exists \(C_{1}\) satisfies \(C_{1} < 1\).

$$\begin{aligned} C_{1} & = \frac{{\left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}{{\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}_{b}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)} \left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)}}\frac{{2\delta_{3S} \left( {1 - \delta_{S} + \delta_{2S} } \right)}}{{\left( {1 - \delta_{S} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)}}\frac{{\sqrt {\left( {1 - \delta_{S}^{2} } \right)} }}{{1 - 2\delta_{S} }} \\ & \le \frac{{\left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}_{b}^{k} } \\ \end{array} } \right|}} } \right)\sqrt {\left( {1 - \delta_{{\left| {{{{\mathcal{T}} }}^{k} } \right|}} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)} }}{{\left( {1 - \delta_{S} } \right)\left( {1 + \delta_{{\left| {{{{\mathcal{T}}}}\begin{array}{*{20}c} {{{\backslash {\mathcal{T}} }}^{k} } \\ \end{array} } \right|}} } \right)}}\frac{{2\delta_{3S} \left( {1 - \delta_{S} + \delta_{2S} } \right)}}{{\left( {1 - \delta_{S} } \right)\left( {1 - \delta_{{\left| {{{{\mathcal{T}}}}\backslash {{{\mathcal{T}}}}_{b}^{k} } \right|}} } \right)}}\frac{{\sqrt {\left( {1 - \delta_{S}^{2} } \right)} }}{{1 - 2\delta_{S} }} \\ & \le \frac{{2\delta_{3S} \left( {1 + \delta_{S} } \right)\left( {1 - \delta_{S} + \delta_{2S} } \right)\sqrt {\left( {1 - \delta_{S}^{2} } \right)} }}{{\left( {1 - \delta_{S} } \right)^{3} \left( {1 - 2\delta_{S} } \right)}} \\ \end{aligned}$$
(69)

By numerical calculation we find that when \(\delta_{3S}\) satisfies \(0 \le \delta_{S} \le \delta_{3S} \le 0.17\), we have \(C_{1} < 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, H., Kong, W. et al. Structured Compressive Sensing Based Block-Sparse Channel Estimation for MIMO-OFDM Systems. Wireless Pers Commun 108, 2279–2309 (2019). https://doi.org/10.1007/s11277-019-06522-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06522-8

Keywords

Navigation