Skip to main content
Log in

Design of Wideband Flower-Shaped Microstrip Patch Antenna for Portable Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper discusses design of wideband diagonally symmetrical flower-shaped patch antenna with reduced ground plane. The anticipated antenna is provided microstrip line feed for signal excitation. The antenna is designed and analyzed using finite-element-based simulator HFSS (version 15.0) and provides wide impedance bandwidth between 1.49 and 2.46 GHz. Parametric analysis of significant design parameters is conducted to attain 49% 10-dB impedance bandwidth relative to center frequency of 1.975 GHz. The prototype antenna is fabricated and tested to measure different experimental results including return loss, VSWR, radiation pattern and gain. Reasonable agreement is attained between simulated and measured results. The designed antenna retains an advantage of being low profile and compact in size as overall dimensions of proposed patch antenna is 0.42λ0 × 0.36λ0 × 0.011λ0mm3. Thus, it is considered suitable for GPS (1.57 GHz), GSM (1.8 GHz), Wi-Max (2.3 GHz) and WLAN (2.45 GHz) portable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen, Z. N., & Chia, M. Y. W. (2006). Broadband microstrip patch antenna. In Z. N. Chen & M. Y. W. Chia (Eds.), Broadband planar antennas: design and applications (p. 258). Hoboken: Wiley.

    Google Scholar 

  2. Kumar, A., Gupta, N., & Gautam, P. C. (2016). Gain and bandwidth enhancement techniques in microstrip patch antennas—a review. International Journal of Computer Applications, 148(7), 9–14.

    Article  Google Scholar 

  3. Kakaria, P., & Nema, R. (2014). Review and survey of broadband microstrip patch antenna. In International conference on advances in engineering and technology research (ICAETR) (Vol. 59, pp. 49–55). Unnao, India: IEEE.

  4. Herscovici, N. (1998). New considerations in the design of microstrip antennas. IEEE Transactions on Antennas and Propagation, 46(6), 807–812. https://doi.org/10.1109/8.686766.

    Article  Google Scholar 

  5. Wong, K. L., Tung, H. C., & Chiou, T. W. (2002). Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots. IEEE Transactions on Antennas and Propagation, 50(2), 188–191. https://doi.org/10.1109/8.997993.

    Article  Google Scholar 

  6. Rao, P. H., Fusco, V. F., & Cahill, R. (2001). Broadband Circularly Polarised Proximity Coupled Patch Antenna. In Eleventh international conference onantennas and propagation, (IEE Conf. Publ. No. 480) (pp. 521–523). Manchester, UK: IET.

  7. Singh, H., Awasthi, Y. K., & Verma, A. K. (2008). Microstrip patch antenna with defected ground structure & defected microstrip structure. Procceding of recent advances in microwave theory and applications (pp. 937–938). IEEE: Jaipur.

    Google Scholar 

  8. Mahmoud, S. F., & Almutairi, Al. (2004). Broadband microstrip patch antenna with pin loading for wireless communications. First international symposium on control, communications and signal processing (pp. 307–309). IEEE: Hammamet.

    Chapter  Google Scholar 

  9. Islam, M. T., Shakib, M. N., Misran, N., & Yatim, B. (2008). Analysis of Broadband Slotted Microstrip Patch Antenna. In Proceedings of 11th international conference on computer and information technology (ICCIT) (pp. 25–27). Khulna, Bangladesh: IEEE.

  10. Gupta, B., Nakhate, S., & Shandilya, M. (2014). A compact wideband microstrip patch antenna with defected ground plane. Fourth world congress on information and communication technologies (WICT) (pp. 51–56). IEEE: Bandar Hilir.

    Google Scholar 

  11. Zhang-shan, D., Shao Bo, Q., & Yi-wei, H. (2008). A novel broadband microstrip patch antenna based on the spiral composite right/left-handed transmission line. IEEE international workshop on metamaterials (pp. 2–6). IEEE: Nanjing.

    Google Scholar 

  12. Li, D., Guo, P., Dai, Q., & Fu, Y. (2012). Broadband capacitively coupled stacked patch antenna for GNSS applications. IEEE Antennas and Wireless Propagation Letters, 11, 701–704. https://doi.org/10.1109/LAWP.2012.2205129.

    Article  Google Scholar 

  13. Katyal, A., Member, S., & Basu, A. (2016). Compact and broadband stacked microstrip patch antenna for target scanning applications. IEEE Antennas and Wireless Propagation Letters, 16, 381–384. https://doi.org/10.1109/LAWP.2016.2578723.

    Article  Google Scholar 

  14. Wang, Y. J., Lee, C. K., & Karmakar, N. C. (2001). A novel microstrip patch antenna for 3G IMT-2000 mobile handsets. Microwave and Optical Technology Letters, 31(6), 488–491. https://doi.org/10.1002/mop.10069.

    Article  Google Scholar 

  15. Yang, F., Zhang, X., Ye, X., & Rahmat-samii, Y. (2001). Wide-Band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation, 49(7), 1094–1100. https://doi.org/10.1109/8.933489.

    Article  Google Scholar 

  16. Matin, M. A., Saha, M. P., & Hasan, H. M. (2010). Design of Broadband Patch Antenna for WiMAX and WLAN. In International conference on microwave and millimeter wave technology (ICMMT), 2010 (pp. 3–5). Chengdu, China: IEEE. https://doi.org/10.1109/icmmt.2010.5525304.

  17. Lau, K. L., & Luk, K. M. (2005). A novel wide-band circularly polarized patch antenna based on L-probe and aperture-coupling techniques. IEEE Transactions on Antennas and Propagation, 53(1), 577–580. https://doi.org/10.1109/TAP.2004.838796.

    Article  Google Scholar 

  18. Ahsan, M. R., Islam, M. T., & Ullah, M. H. (2017). A simple design of planar microstrip antenna on composite material substrate for Ku/K band satellite applications. International Journal of Communication Systems, 30, e2970. https://doi.org/10.1002/dac.2970.

    Article  Google Scholar 

  19. Choi, D.-Y., Shrestha, S., Park, J.-J., & Noh, S.-K. (2014). Design and performance of an efficient rectenna incorporating a fractal structure. International Journal of Communication Systems, 27, 661–679. https://doi.org/10.1002/dac.2587.

    Article  Google Scholar 

  20. Hu, W., Tang, Z.-Y., Fei, P., & Yin, Y.-Z. (2016). Broadband circularly polarized Z-shaped dipole antenna with parasitic strips. International Journal of RF and Microwave Computer-Aided Engineering, 27(1), 1–7. https://doi.org/10.1002/mmce.21052.

    Article  Google Scholar 

  21. Patre, S. R., & Singh, S. P. (2015). CPW-fed flower-shaped patch antenna for broadband applications. Microwave and Optical Technology Letters, 57(12), 2908–2913. https://doi.org/10.1002/mop.29480.

    Article  Google Scholar 

  22. Ooi, B. L., & Ang, I. (2005). Broadband semicircle-fed flower-shaped microstrip patch antenna. Electronics Letters, 41(17), 17–18. https://doi.org/10.1049/el:20051764.

    Article  Google Scholar 

  23. Kaim, V., Birwal, A., Jaiswal, R. K., Ranjan, K. R., & Patel, K. (2016). Flower shaped slotted microstrip patch antenna for circular polarization. IOSR Journal of Electrical and Electronics Engineering, 11(1), 85–90. https://doi.org/10.9790/1676-11118590.

    Article  Google Scholar 

  24. Kaushal, D., & Shanmuganantham, T. (2017). Parametric enhancement of a novel microstrip patch antenna using circular SRR Loaded Fractal Geometry. Alexandria Engineering Journal. https://doi.org/10.1016/j.aej.2017.08.021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Gupta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Saxena, J. & Bhatia, K.S. Design of Wideband Flower-Shaped Microstrip Patch Antenna for Portable Applications. Wireless Pers Commun 109, 17–30 (2019). https://doi.org/10.1007/s11277-019-06547-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06547-z

Keywords

Navigation