Skip to main content

Advertisement

Log in

A Multihoming ACO-MDV Routing for Maximum Power Efficiency in an IoT Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Internet of Things (IoT) is the recent technology emerged with new research ideas in the communication arena. With multiple sensors and actuators, it operates on limited energy for numerous applications and it requires major updates for data updating in the network. Mobility, redundancy, and bandwidth are the common factors used to measure the network performance. Data accessing using multihoming mechanism is used to enhance the network performance without any compromise in quality of service. Multi-homing is used to connect one or more devices into a heterogeneous multi-network by using IP address with a best routing strategy. Efficient routing in the multihoming mechanism develops a reliable network and provides a better power efficiency and QoS policy to the users. This proposed research work includes an efficient Ant Colony Optimization On-demand Multipath Distance Vector routing algorithm for enhancing power efficiency in multihoming mechanism based IoT. The proposed model highlights the best routing algorithm in terms of energy consumption and delay that is suitable in multihoming networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khatouni, A. S., Marsan, M. A., Mellia, M., & Rejaie, R. (2018). Deadline-constrained content upload from multihomed devices: Formulations and algorithms. Journal of Computer Networks, 142, 76–92.

    Article  Google Scholar 

  2. Sun, Y., Zhang, Y., Fang, B., & Zhang, H. (2017). Succinct and practical greedy embedding for geometric routing. Journal of Computer Communications, 114, 51–61.

    Article  Google Scholar 

  3. Manisekaran, S. V., & Venkatesan, R. (2016). An analysis of software-defined routing approach for wireless sensor networks. Journal of Computers and Electrical Engineering, 56, 456–467.

    Article  Google Scholar 

  4. Huang, H., Zhang, J., Zhang, X., Yi, B., Fan, Q., & Li, F. (2017). EMGR: Energy-efficient multicast geographic routing in wireless sensor networks. Computer Network, 129, 51–63.

    Article  Google Scholar 

  5. Jackson, C., & Hollis, S. J. (2011). A deadlock-free routing algorithm for dynamically reconfigurable Networks-on-Chip. Microprocessors and Microsystems, 35, 139–151.

    Article  Google Scholar 

  6. Güney, E., Aras, N., Altınel, İ. K., & Ersoy, C. (2012). Efficient solution techniques for the integrated coverage, sink location and routing problem in wireless sensor networks. Journal of Computers & Operations Research, 39, 1530–1539.

    Article  Google Scholar 

  7. Archetti, C., Fernández, E., & Huerta-Muñoz, D. L. (2017). The flexible periodic vehicle routing problem. Journal of Computers and Operations Research, 85, 58–70.

    Article  MathSciNet  Google Scholar 

  8. Osman, M. S., & Ram, B. (2017). Routing and scheduling on evacuation path networks using centralized hybrid approach. Journal of Computers and Operations Research, 88, 332–339.

    Article  MathSciNet  Google Scholar 

  9. Paraskevopoulos, D. C., Laporte, G., Repoussis, P. P., & Tarantilis, C. D. (2017). Resource constrained routing and scheduling: Review and research prospects. European Journal of Operational Research, 263, 737–754.

    Article  MathSciNet  Google Scholar 

  10. Zhang, X., & Da Wu, X. (2011). The balance of routing energy consumption in wireless sensor networks. Journal of Parallel Distributed Computing, 71, 1024–1033.

    Article  Google Scholar 

  11. Mathura, A., Newea, T., Elgenaidia, W., Raoa, M., Doolya, G., & Toal, D. (2017). A secure end-to-end IoT solution. Journal of Sensors and Actuators, 263, 291–299.

    Article  Google Scholar 

  12. Demircan, S., Aydin, M., & Durduran, S. S. (2011). Finding optimum route of electrical energy transmission line using multi-criteria with Q-learning. Journal of Expert Systems with Applications, 38, 3477–3482.

    Article  Google Scholar 

  13. Khayou, H., & Sarakbi, B. (2017). A validation model for non-lexical routing protocols. Journal of Network and Computer Applications, 98, 58–64.

    Article  Google Scholar 

  14. Güney, E., Aras, N., Altınel, İ. K., & Ersoy, C. (2010). Efficient integer programming formulations for optimum sink location and routing in heterogeneous wireless sensor networks. Journal of Computer Networks, 54, 1805–1822.

    Article  Google Scholar 

  15. Santos, B. P., Vieira, L. F. M., & Vieira, M. A. M. (2017). CGR: Centrality-based green routing for low-power and lossy networks. Journal of Computer Networks, 129, 117–128.

    Article  Google Scholar 

  16. Jamali, S., Rezaei, L., & Gudakahriz, S. J. (2013). An energy-efficient routing protocol for MANETs: A particle swarm optimization approach. Journal of Applied Research and Technology, 11, 803–812.

    Article  Google Scholar 

  17. Agarwal, S., & De, S. (2016). Cognitive multihoming system for energy and cost aware video transmission. IEEE Transactions on Cognitive Communications and Networking, 2(3), 316–329.

    Article  Google Scholar 

  18. Lee, J., Yun, S., Oh, H., Shah Newaz, S. H., Choi, S. G., & Choi, J. K. (2016). Power-efficient rate allocation of wireless access networks with sleep-operation management for multihoming services. Journal of Communications and Networks, 18(4), 619–628.

    Article  Google Scholar 

  19. Yao, J., Zhou, H., Luo, J., Liu, X., & Guan, H. (2015). COMIC: Cost optimization for internet content multihoming. IEEE Transactions on Parallel and Distributed Systems, 26(7), 1851–1860.

    Article  Google Scholar 

  20. Kuntz, R., Montavont, J., & Noel, T. (2013). Multihoming in IPv6 mobile networks: Progress, challenges, and solutions. IEEE Communications Magazine, 51(1), 128–135.

    Article  Google Scholar 

  21. Wallace, T. D., & Shami, A. (2012). A review of multihoming issues using the stream control transmission protocol. IEEE Communications Surveys & Tutorials, 14(2), 565–578.

    Article  Google Scholar 

  22. Chuah, S.-P., Chen, Z., & Tan, Y.-P. (2013). Energy minimization for wireless video transmissions with deadline and reliability constraints. IEEE Transactions on Circuits and Systems for Video Technology, 23(3), 467–481.

    Article  Google Scholar 

  23. Jiang, Q., Leung, V. C. M., Pourazad, M. T., Tang, H., & Xi, H.-S. (2016). Energy-efficient adaptive transmission of scalable video streaming in cognitive radio communications. IEEE Systems Journal, 10(2), 761–772.

    Article  Google Scholar 

  24. Luo, J., Rao, L., & Liu, X. (2014). Temporal load balancing with service delay guarantees for data center energy cost optimization. IEEE Transactions on Parallel and Distributed Systems, 25(3), 775–784.

    Article  Google Scholar 

  25. Al-Turjman, F. M., Imran, M., & Bakhsh, S. T. (2017). Energy efficiency perspectives of femtocells in Internet of Things: Recent advances and challenges. IEEE Access, 5, 26808–26818.

    Article  Google Scholar 

  26. Lee, K., & Hong, J. P. (2017). Power control for energy efficient D2D communication in heterogeneous networks with eavesdropper. IEEE Communications Letters, 21(11), 2536–2539.

    Article  Google Scholar 

  27. Kaur, N., & Sood, S. K. (2017). An energy-efficient architecture for the Internet of Things (IoT). IEEE Systems Journal, 11(2), 796–805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishnaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnaraj, N., Smys, S. A Multihoming ACO-MDV Routing for Maximum Power Efficiency in an IoT Environment. Wireless Pers Commun 109, 243–256 (2019). https://doi.org/10.1007/s11277-019-06562-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06562-0

Keywords

Navigation