Skip to main content
Log in

Investigation on R–S Coded Coherent OFDM Free Space Optical (CO-OFDM-FSO) Communication Link Over Gamma–Gamma Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Atmospheric turbulence is known to significantly degrade the efficiency and reliability of free space optical communication link. Use of coded-orthogonal frequency division multiplexing (OFDM) technique to mitigate the effect of adverse atmospheric conditions on free space optical (FSO) communication link has been proposed here. With Gamma–Gamma distribution for channel modeling, the error performance of the proposed RS8 (Reed Solomon) coded, 128 sub-carrier OFDM link has been investigated using coherent BPSK and QPSK modulation scheme. The results obtained from this analysis have also been compared with intensity modulated/direction detection (IM/DD) based OOK-OFDM FSO link. In case of strong turbulence and for target BER of 10−4, it was observed that BPSK and QPSK modulated OFDM FSO link achieve a descent coding gain of 18.2 dB and 12.6 dB respectively over non coded OOK-OFDM FSO link. Also, it was observed that as the link conditions worsened from weak to strong turbulence, the effect of atmospheric impairments on FSO link becomes significantly pronounced. Additionally, in terms of BER performance, the BPSK modulated link out-performed QPSK and OOK under all the considered channel conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Majumdar, A. K. (2005). Free-space laser communication performance in the atmospheric channel. Journal of Optical Fiber Communications Reports., 2, 345–396.

    Article  Google Scholar 

  2. Arnon, S., Barry, J. R., Karagiannidis, G. K., Schober, R., & Uysal, M. (Eds.). (2012). Advanced optical wireless communication. Cambridge: Cambridge University Press.

    Google Scholar 

  3. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys and Tutorials, 16(4), 2231–2258.

    Article  Google Scholar 

  4. Anguita, J. A., Djordjevic, I. B., Neifeld, M. A., Vasic, B. V. (2005). High-rate error-correction codes for the optical atmospheric channel. In: Proceedings of the SPIE, Free-Space Laser Communications, 58920 V.

  5. Chan, V. W. S. (2006). Free-space optical communications. Journal of Lightwave Technology, 24, 4750–4762.

    Article  Google Scholar 

  6. Al Naboulsi, M., Sizun, H., & de Fornel, F. (2004). Fog attenuation prediction for optical and infrared waves. Optical Engineering, 43(2), 319–329.

    Article  Google Scholar 

  7. Andrews, L. C., Phillips, R. L., Hopen, C. Y., & Al-Habash, M. A. (1999). Theory of optical scintillation. Journal of Optical Society America, 16, 1417–1429.

    Article  Google Scholar 

  8. Andrews, L. C. (2007). Field guide to atmospheric optics. SPIE Field Guides, 6–13, 62–64.

    Google Scholar 

  9. Zhu, X., & Kahn, J. M. (2002). Free-space optical communication through atmospheric turbulence channels. IEEE Transactions on Communications, 50, 1293–1300.

    Article  Google Scholar 

  10. Miglani, R., & Malhotra, J. (2018). Statistical analysis of FSO links employing multiple transmitter/receiver strategy over double-generalized and gamma–gamma fading channel using different modulation techniques. Journal of Optical Communications. https://doi.org/10.1515/joc-2017-0066.

    Article  Google Scholar 

  11. Kedar, D., & Arnon, S. (2004). Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Communications Magazine, 42, 2–7.

    Article  Google Scholar 

  12. Kaushal, H., Jain, V. K., & Kar, S. (2017). Free space optical communication. In: Optical networks, 1st edn. Springer. https://doi.org/10.1007/978-81-322-3691-7.

  13. Djordjevic, Ivan. B., Vasic, Bane., & Neifeld, Mark. A. (2007). LDPC coded OFDM over the atmospheric turbulence channel. Optics Express, 15, 6336–6350.

    Article  Google Scholar 

  14. van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Boston: ArtechHouse.

    Google Scholar 

  15. Bhatnagar, M. R., & Ghassemlooy, Z. (2016). Performance analysis of gamma–gamma fading FSO MIMO links with pointing errors. Journal of Lightwave Technology, 34, 2158–2169.

    Article  Google Scholar 

  16. Yang, L., Gao, X., & Alouini, M. S. (2014). Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels. IEEE Photonics Journal, 6, 1–17.

    Google Scholar 

  17. Nistazakis, H. E., & Tombras, G. S. (2012). On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels. Journal of Optics and Laser Technology, 44, 2088–2094.

    Article  Google Scholar 

  18. Navidpour, S. M., Uysal, M., & Kavehrad, M. (2007). BER performance of free space optical transmission with spatial diversity. IEEE Transactions on Wireless Communications, 6, 2813–2819.

    Article  Google Scholar 

  19. Stassinakis, A. N., Nistazakis, H. E., & Tombras, G. S. (2012). Comparative performance study of one or multiple receivers schemes for FSO links over gamma–gamma turbulence channels. Journal of Modern Optics, 59, 1023–1031.

    Article  Google Scholar 

  20. Wang, Z., Zhong, W.-D., Fu, S., & Lin, C. (2009). Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics Journal, 1, 277–285.

    Article  Google Scholar 

  21. Tsiftsis, T. A., Sandalidis, H. G., Karagiannidis, G. K., & Uysal, M. (2009). Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 8, 951–957.

    Article  Google Scholar 

  22. Amphawan, A., Chaudhary, S., & Chan, V. W. S. (2014). 2 × 20 Gbps–40 GHz OFDM Ro-FSO transmission with mode division multiplexing. Journal of the European Optical Society-Rapid Publications, 9, 1–6.

    Article  Google Scholar 

  23. Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik, 125, 5196–5198.

    Article  Google Scholar 

  24. Sharma, V., & Kaur, G. (2013). High speed, long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik, 124, 6111–6114.

    Article  Google Scholar 

  25. Sushank, V. S. (2014). High speed CO-OFDM-FSO transmission system. Optik, 125, 1761–1763.

    Article  Google Scholar 

  26. Sharma, M., Chadha, D., & Chandra, V. (2016). Performance analysis of MIMO–OFDM free space optical communication system with low-density parity-check code. Photonic Network Communications, 32(1), 104–114.

    Article  Google Scholar 

  27. Kim, A., Joo, Y. H., & Kim, Y. (2004). 60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs. IEEE Transactions on Consumer Electronics, 50, 517–520.

    Article  Google Scholar 

  28. Kakati, Dhiman., & Arya, Subhash. C. (2018). A full-duplex optical fiber/wireless coherent communication system with digital signal processing at the receiver. Optik, 171, 190–199.

    Article  Google Scholar 

  29. Pan, Q., & Green, R. J. (1996). Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise. IEEE Photonics Technology Letters, 8, 278–280.

    Article  Google Scholar 

  30. Chronopoulos, S. K., Christofilakis, V., Tatsis, G., & Kostarakis, P. (2016). Preliminary BER study of a TC-OFDM system operating under noisy conditions. Journal of Engineering Science and Technology Review, 9(4), 13–16.

    Article  Google Scholar 

  31. Chronopoulos, S. K., Christofilakis, V., Tatsis, G., & Kostarakis, P. (2016). Performance of turbo coded OFDM under the presence of various noise types. Wireless Personal Communications, 87(4), 1319–1336.

    Article  Google Scholar 

  32. Dixon, B. J., Pollard, R. D., & Iezekiel, S. (2001). Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds. IEEE Transactions on Microwave Theory and Techniques, 49, 1404–1409.

    Article  Google Scholar 

  33. Seimetz, M. (2006). Performance of coherent optical Square-16-QAM-Systems based on IQ-transmitters and homodyne receivers with digital phase estimation. In: Optical fiber communication conference and exposition and the national fiber optic engineers conference. Optical Society of America.

  34. Yoshida, M., Goto, H., Kasai, K., & Nakazawa, M. (2008). 64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection. Optics Express, 16, 829–840.

    Article  Google Scholar 

  35. Mehra, M., Sadawarti, H., & Singh, M. L. (2017). Performance analysis of coherent optical communication system for higher order dual polarization modulation formats. Optik (Stuttg.), 135, 174–179. https://doi.org/10.1016/j.ijleo.2017.01.034.

    Article  Google Scholar 

  36. Zhao, Z., Liao, R., Lyke, S., Roggemann, M. (2010). Reed-solomon coding for free-space optical communications through turbulent atmosphere. In: Proceedings of IEEE Aerospace Conference (pp. 6–13).

  37. Menglong, Wu., Han, Dahai., Zhang, Xiang., Zhang, Feng., Zhang, Min., & Yue, Guangxin. (2014). Experimental research and comparison of LDPC and RS channel coding in ultraviolet communication systems. Optics Express, 22, 5422–5430.

    Article  Google Scholar 

  38. Wicker, S. B., & Bhargava, V. K. (1994). Algorithms and architectures for the design of a VLSI Reed–Solomon codec. In: ReedSolomon codes and their applications. IEEE. https://doi.org/10.1109/9780470546345.ch5.

  39. Wicker, S. B., & Bhargava, V. K. (1994). Soft decision decoding of Reed–Solomon codes. In: ReedSolomon codes and their applications. IEEE, https://doi.org/10.1109/9780470546345.ch6.

  40. Ardalan, S., Raahemifar, K., Yuan, F., Geurkov, V. (2003). Reed–Solomon encoder and decoder design simulation and synthesis. In: IEEE CCECE.

  41. Lestable, T., & Zimmermann, E. (2005). LDPC options for next generation wireless systems. In: WWRF.

  42. Kim, T., Baik, J., Lee, M., et al. (2017). Adaptive deactivation and zero-forcing scheme for low-complexity LDPC decoders. EURASIP Journal on Wireless Communications and Networking, 1, 153.

    Article  Google Scholar 

  43. Chronopoulos, S. K., Tatsis, G., & Kostarakis, P. (2012). Turbo coded OFDM with large number of subcarriers. Journal of Signal and Information Processing, 3(2), 161–168.

    Article  Google Scholar 

  44. Rashidi, F., He, J., & Chen, L. (2016). Performance Investigation of FSO–OFDM communication systems under the heavy rain weather. Journal of Optical Communications, 39, 37–42.

    Google Scholar 

  45. Rashidi, Florence., He, Jing., & Chen, Lin. (2017). Spectrum slicing WDM for FSO communication systems under the heavy rain weather. Optics Communications, 387, 296–302.

    Article  Google Scholar 

  46. Alnajjar, S. H., Noori, A. A., & Moosa, A. A. (2017). Enhancement of FSO communications links under complex environment. Photonic Sensors, 7(2), 113–122.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Electronics and Communication Engineering, D.A.V institute of engineering and technology and I.K.G-P.T.U, India for providing the necessary infrastructure and facilities for this research work. We are also thankful to anonymous reviewers for their invaluable comments and suggestions which have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Miglani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miglani, R., Malhotra, J.S. Investigation on R–S Coded Coherent OFDM Free Space Optical (CO-OFDM-FSO) Communication Link Over Gamma–Gamma Channel. Wireless Pers Commun 109, 415–435 (2019). https://doi.org/10.1007/s11277-019-06571-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06571-z

Keywords

Navigation