Skip to main content
Log in

Analyzing Impacts of Spatial Correlation for Multi-user Environment with Robust Concatenation of Advanced FEC Schemes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent days, the enhancement of MIMO in the area of wireless communications with spatial correlation characteristics by means of the forward-error-correction (FEC) techniques has been introduced as a vital technology. To overcome the limitations of the FEC in MIMO–OFDM systems, this paper introduces the effect of spatial correlation in FEC for multi-user MIMO–OFDM system. Here, the error correction codes (ECC) namely low-density parity check (LDPC-CC), turbo code CC, convolutional code (CC) and Reed–Solomon code (RSC-CC), and polar code CC (PC-CC) are authenticated for three channel representations known as Rayleigh, Rician and additive white Gaussian noise for multi-user (MU) with 8 users and single user MIMO–OFDM system. The investigation is carried out by means of four modulation techniques like, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM)-16 and QAM-64. It is done under three antenna configurations like 2 × 2, 2 × 4, and 4 × 4. In addition, the peak signal to noise ratio is deployed to recognize the image transmission and the bit error rate, is employed to recognize the data transmission. Furthermore, from the experimental results, the PC-CC in MU system is found to offer better performance than the other configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

UEP:

Unequal error protection

EEP:

Equal error protection

ST:

Space–time

ISI:

Inter symbol interference

CMCMAC:

Cross-layer multi-channel MAC

EE-AS:

Energy efficient AS approach

MTs:

Mobile terminals

2D:

Two-dimensional

2D SEC-DED:

2D single error correction and double error detection

BER:

Bit error rate

TPC:

Turbo product code

RCPC:

Rate compatible punctured convolutional

BW:

Bandwidth

FDMA:

Frequency-division multiple access

AL:

Application layer

PL:

Physical layer

LDGM:

Low-density generator matrix

A-FEC:

Adaptive FEC

GA:

Genetic algorithm

TG:

Technical group

TSG:

Technical specification group

WLANs:

Wireless local area networks

SIMO:

Single-input multiple-output

SVD:

Singular value decomposition

SRC:

Systematic Raptor codes

CMSE:

Cumulative means square error

References

  1. Pop, P., Scholle, D., Šljivo, I., Hansson, H., & Rosqvist, M. (2017). Safe cooperating cyber-physical systems using wireless communication: The SafeCOP approach. Microprocessors and Microsystems, 53, 42–50.

    Article  Google Scholar 

  2. Sherifi, I., & Senja, E. (2018) Internet usage on mobile devices and their impact on evolution of informative websites in albania. European Journal of Business, 3(6), 37–43.

    Google Scholar 

  3. Hu, B., Liu, Y., Xie, G., Gao, J., & Yang, Y. (2014). Energy efficiency of massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 21(6), 1–8.

    Article  Google Scholar 

  4. Nikolic, G. S., Stojcev, M. K., Nikolic, T. R., Petrovic, B. D., & Dimitrijevic, B. R. (2017). Implementation and evaluation of 2D SEC-DED forward error correction scheme in wireless sensor networks. Microelectronics Reliability, 78, 161–180.

    Article  Google Scholar 

  5. Alreesh, S., Schmidt-Langhorst, C., Frey, F., Berenguer, P. W., Schubert, C., & Fischer, J. K. (2015). Transmission performance of 4D 128SP-QAM with forward error correction coding. IEEE Photonics Technology Letters, 27(7), 744–747.

    Article  Google Scholar 

  6. Hou, Y., Xu, J., Xiang, W., Ma, M., & Lei, J. (2017). Near-optimal cross-layer forward error correction using raptor and RCPC codes for prioritized video transmission over wireless channels. IEEE Transactions on Circuits and Systems for Video Technology, 27(9), 2028–2040.

    Article  Google Scholar 

  7. Kabát, M., David, V., Holub, P., & Pulec, M. (2016). High-performance forward error correction: Enabling multi-gigabit flows and beyond on commodity GPU and CPU hardware in presence of packet loss. Future Generation Computer Systems, 54, 326–335.

    Article  Google Scholar 

  8. Ali, F. A., Simoens, P., Van de Meerssche, W., & Dhoedt, B. (2014). Bandwidth efficient adaptive forward error correction mechanism with feedback channel. Journal of Communications and Networks, 16(3), 322–334.

    Article  Google Scholar 

  9. Wu, Y., Kumar, S., Hu, F., Zhu, Y., & Matyjas, J. D. (2014). Cross-layer forward error correction scheme using raptor and RCPC codes for prioritized video transmission over wireless channels. IEEE Transactions on Circuits and Systems for Video Technology, 24(6), 1047–1060.

    Article  Google Scholar 

  10. Finto, R., & Sameer, S. M. (2017). A joint subcarrier and power allocation technique with pro-rata fairness and unequal error protection for video transmission over OFDMA downlink. Computer Communications, 114, 10–21.

    Article  Google Scholar 

  11. Zhang, Y., Zhang, K., Kang, Y., & Yang, D. (2015). Unequal error protection scheme for layered sources transmission over MIMO systems using spatial diversity and multiplexing technology. The Journal of China Universities of Posts and Telecommunications, 22(3), 56–63.

    Article  Google Scholar 

  12. Chang, R. Y., Lin, S.-J., & Chung, W.-H. (2013). A method for the construction of hierarchical generalized space shift keying (GSSK) modulation for unequal error protection. Physical Communication, 9, 88–96.

    Article  Google Scholar 

  13. Guan, K., Cho, J., & Winzer, P. J. (2018). Physical layer security in fiber-optic MIMO-SDM systems: An overview. Optics Communications, 408, 31–41.

    Article  Google Scholar 

  14. Xiaoyu, H., Chen, Z., & Yin, F. (2018). Channel and delay estimation for asynchronous physical layer network coding. AEU - International Journal of Electronics and Communications, 87, 101–106.

    Article  Google Scholar 

  15. Bisio, I., Garibotto, C., Lavagetto, F., & Sciarrone, A. (2017). Performance evaluation of application layer joint coding solutions for video transmissions between mobile devices over the Internet of Things. Computer Communications, 118, 50–59.

    Article  Google Scholar 

  16. Celik, Y., & Akan, A. (2018). Subcarrier intensity modulation for MIMO visible light communications. Optics Communications, 412, 90–101.

    Article  Google Scholar 

  17. Karthipan, R., Vishvaksenan, K. S., Kalidoss, R., & Krishan, A. (2016). Performance of turbo coded triply-polarized MIMO–CDMA system for downlink communication. Computers & Electrical Engineering, 56, 182–192.

    Article  Google Scholar 

  18. Dong, Y., & Xinji, T. (2016). Interference cancellation method based on space–time code for MIMO interference channel. The Journal of China Universities of Posts and Telecommunications, 23(3), 45–50.

    Article  Google Scholar 

  19. Chen, L., Fan, Z., & Huang, J. (2016). Data hiding capacity of spatial domain bit replacement steganography in an MIMOOFDM coding channel. AEU - International Journal of Electronics and Communications, 70(9), 1295–1303.

    Article  Google Scholar 

  20. Song, Y., Weichao, L., Sun, B., Hong, Y., & Jing, X. (2017). Experimental demonstration of MIMOOFDM underwater wireless optical communication. Optics Communications, 403, 205–210.

    Article  Google Scholar 

  21. Zhao, Y., Hao, X., Liu, Z., Wu, H., & Ding, S. (2017). Resource block filtered-OFDM as a multi-carrier transmission scheme for 5G. Computers & Electrical Engineering, 72, 543–552.

    Article  Google Scholar 

  22. Jose, R. (2017). Estimation of channel and carrier frequency offset in OFDM systems using joint statistical framework. Physical Communication, 25(Part 1), 139–147.

    Article  MathSciNet  Google Scholar 

  23. Guan, R., Wei, X., Yang, Z., Huang, N., & Chen, M. (2017). Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Optics Communications, 402, 600–605.

    Article  Google Scholar 

  24. Vikram, K., Sahoo, S. K., & Venkata Lakshmi Narayana, K. (2017). Forward error correction based encoding technique for cross-layer multi channel MAC protocol. Energy Procedia, 117, 847–854.

    Article  Google Scholar 

  25. Rahman, M., de Carvalho, E., & Prasad, R. (2007). Mitigation of MIMO co-channel interference using robust interference cancellation receiver. In Vehicular technology conference (VTC Fall 2007), Baltimore, MD, USA, October 2007.

  26. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal of Selected Areas in Commnications, SAC-5(2), 128–137.

    Article  Google Scholar 

  27. Wallace, J. W., & Jensen, M. A. (2001). Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models. Proceedings of IEEE Vehicular Technology Conference, 2(7–11), 1078–1082.

    Google Scholar 

  28. Du, J., Yang, L., Yuan, J., Zhou, L., & He, X. (2017). “Bit mapping design for LDPC coded BICM schemes with multi-×10dge type×10XIT Chart,” in I × 10 × 10 × 10. Communications Letters, 21(4), 722–725.

    Article  Google Scholar 

  29. Agarwal, A., & Mehta, S. N. Examining impacts of spatial correlation in forward error correction code. Digital communications and networks, accepted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Mehta, S.N. Analyzing Impacts of Spatial Correlation for Multi-user Environment with Robust Concatenation of Advanced FEC Schemes. Wireless Pers Commun 109, 1237–1283 (2019). https://doi.org/10.1007/s11277-019-06612-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06612-7

Keywords

Navigation