Skip to main content
Log in

Performance Analysis of Bit-Interleaved Polar Coded Modulation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Polar codes have been applied to the construction of bit-interleaved polar coded modulation schemes in recent years. Bit-interleaved polar coded modulation schemes consist of the concatenation of multi-order modulation and polar codes. The structure of polar codes has some similar features to bit-interleaved coded modulation schemes. This similar features motivate us to transform the concatenated transmission schemes into a universal equivalent channel model, which consists of independent parallel channels, through considering polar coding and modulation synthetically in practical applications. We also propose a general polar codes constructing algorithm to design the constituent polar codes for the equivalent channel model. Then we employ a bijective mapper to accomplish the modulation i.e., binary address mapping, from coded bits to signals in constellation with Gray labeling or set partition labeling rule in different order modulations. We analyze and compare the performance of the equivalent channel model with different order modulations under different decoding algorithms. Simulation results show that the performance of our proposed schemes outperforms that of low-density parity-check codes in WiMAX standard and Turbo codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.

    Article  MathSciNet  Google Scholar 

  2. Zehavi, E. (1989). 8-PSK trellis codes on Rayleigh channel. In Proceedings of IEEE military communications conference (pp. 536–540).

  3. Caire, G., Taricco, G., & Biglieri, E. (1998). Bit-interleaved coded modulation. IEEE Transactions on Information Theory, 44(3), 927–946.

    Article  MathSciNet  Google Scholar 

  4. Arkan, E. (2009). Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55(7), 3051–3073.

    Article  MathSciNet  Google Scholar 

  5. Tal, I., & Vardy, A. (2011). List decoding of polar codes. In Proceedings of IEEE international symposium on information theory (pp. 1–5).

  6. MacKay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45, 399–431.

    Article  MathSciNet  Google Scholar 

  7. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error correcting coding and decoding: Turbo-codes. In Proceedings of IEEE international conference on communications (ICC), (Geneva, Switzerland) (Vol. 2, pp. 1064–1070).

  8. Leroux, C, Tal, I., Vardy, A., & Gross, W. J. (2011). Hardware architectures for successive cancellation decoding of polar codes. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP), (pp. 1665–1668).

  9. Arikan, E. (2008). A performance comparison of polar codes and Reed–Muller codes. IEEE Communications Letters, 12(6), 447–449.

    Article  Google Scholar 

  10. Arikan, E. (2010). Polar codes: A pipelined implementation. In Proceedings of 4th international symposium broadcasting communications (ISBC), (pp. 11–14).

  11. Afser, H., & Tirpan, N. (2014). Bit interleaved polar coded modulation. IEEE wireless communications and networking conference (WCNC), (pp. 480–484).

  12. Seidl, M., Schenk, A., Stierstorfer, C., & Huber, J. B. (2013). Polar-coded modulation. IEEE Transactions on Communications, 61(10), 4108–4119.

    Article  Google Scholar 

  13. Shin, D. M., Lim, S. C., & Yang, K. (2012). Mapping selection and code construction for 2m-ary polar coded modulation. IEEE Communications Letters, 16(6), 905–908.

    Article  Google Scholar 

  14. GPP. (2016). Study on new radio access technology physical layer aspects. TR 38.802.

  15. Chandesris, L., Savin, V., Declercq, D. (2018). Lasting successive-cancellation based decoders for multilevel polar coded modulation. In IEEE conferences, 2018 25th international conference on telecommunications (ICT), (pp. 264–268).

  16. Pottie, G. J., & Taylor, D. P. (1989). Multi-level codes based on partitioning. IEEE Transactions on Information Theory, 35(1), 87–98.

    Article  MathSciNet  Google Scholar 

  17. Alvarado, A., Graell i Amat, A., Brannstrom, F., & Agrell, E. (2012). On the equivalence of TCM encoders. In Proceedings of IEEE international symposium on information theory (ISIT), (pp. 2401–2405).

  18. Wachsmann, U., Fischer, R. F. H., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45, 1361–1391.

    Article  MathSciNet  Google Scholar 

  19. Martinez, A., Guillen, A., Fabregas, I., Caire, G., & Willems, F. (2009). Bit-interleaved coded modulation revisited: A mismatched decoding perspective. IEEE Transactions on Information Theory, 55, 2756–2765.

    Article  MathSciNet  Google Scholar 

  20. Martinez, A., & Willems, F. (2006). A coding theorem for bit-interleaved coded modulation. In 27th symposium on information theory in the Benelux (WIC 2006), Noordwijk, the Netherlands.

  21. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory (pp. 22–23). New York: Wiley.

    Book  Google Scholar 

  22. Trifonov, P., Miloslavskaya, V., & Morozov, R. (2018). Fast sequential decoding of polar codes. Available: https://arxiv.org/abs/1703.06592v1.

  23. Leroux, C., Raymond, A. J., Sarkis, G., & Gross, W. J. (2013). A semi-parallel successive-cancellation decoder for polar codes. IEEE Transactions on Signal Processing, 61(9), 289–299.

    Article  MathSciNet  Google Scholar 

  24. Stimming, A. B., Parizi, M. B., & Bury, A. (2015). LLR based successive cancellation list decoding of polar codes. IEEE Transactions on Signal Processing, 63(19), 5165–5179.

    Article  MathSciNet  Google Scholar 

  25. Stierstorfer, C., & Fischer, R. F. H. (2007). (Gray) mappings for bit-interleaved coded modulation. In Proceedings of IEEE vehicle technology conference (pp. 1703–1707).

  26. Mori, R., & Tanaka, T. (2009). Performance of polar codes with the construction using density evolution. IEEE Communications Letters, 13(7), 519–521.

    Article  Google Scholar 

  27. Wu, D., Li, Y., & Sun, Y. (2014). Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation. IEEE Communication Letters, 18(7), 1099–1102.

    Article  Google Scholar 

Download references

Acknowledgements

Manuscript submitted December 14, 2017. This work was supported by the National Natural Science Foundation of China under Grant 61671073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Liu, Y., Du, H. et al. Performance Analysis of Bit-Interleaved Polar Coded Modulation. Wireless Pers Commun 109, 1285–1309 (2019). https://doi.org/10.1007/s11277-019-06613-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06613-6

Keywords

Navigation