Skip to main content
Log in

A Comprehensive Survey of Visible Light Communication: Potential and Challenges

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Visible light communication (VLC) is seen as a potential candidate for next generation communication networks. In the last decade VLC has emerged out as complementary technology to radio frequency wireless communication according to different requirements and applications. This technology can be considered as a valuable contributor to the present communication networks issues like spectrum congestion and system’s capacity. This paper provides a comprehensive review of the VLC system. The various benefits and applications of VLC system along with the possibility for the next generation communication systems has been discussed. Different modulation techniques are discussed and comparison is also provide with MATLAB simulations. It also provides comprehensive review of various challenges faced by VLC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Elgala, H., Mesleh, R., & Haas, H. (2009). Indoor broadcasting via white LEDs and OFDM. IEEE Transactions on Consumer Electronics, 55(3), 1127–1134.

    Article  Google Scholar 

  2. Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., & Haas, H. (2014). VLC: Beyond point-to-point communication. IEEE Communications Magazine, 52(7), 98–105.

    Article  Google Scholar 

  3. Malik, A., Kumar, S., Singh, P., & Kaur, P. (2018). Performance enhancement of point-to-point FSO system under rain weather conditions. In Intelligent communication, control and devices (pp. 623–631). Singapore: Springer.

  4. Sevincer, A., Bhattarai, A., Bilgi, M., Yuksel, M., & Pala, N. (2013). LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey. IEEE Communications Surveys & Tutorials, 15(4), 1620–1641.

    Article  Google Scholar 

  5. Karunatilaka, D., Zafar, F., Kalavally, V., & Parthiban, R. (2015). LED based indoor visible light communications: state of the art. IEEE Communications Surveys and Tutorials, 17(3), 1649–1678.

    Article  Google Scholar 

  6. Pathak, P. H., Feng, X., Pengfei, H., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.

    Article  Google Scholar 

  7. Tsonev, D., Videv, S., & Haas, H. (2015). Towards a 100 Gb/s visible light wireless access network. Optics Express, 23(2), 1627–1637.

    Article  Google Scholar 

  8. Ghassemlooy, Z., Alves, L. N., Zvanovec, S., & Khalighi, M.-A. (Eds.). (2017). Visible light communications: Theory and applications. Cambridge: CRC Press.

    Google Scholar 

  9. Parikh, H., Chokshi, J., Gala, N., & Biradar, T. (2013). Wirelessly transmitting a grayscale image using visible light. In 2013 international conference on advances in technology and engineering (ICATE) (pp. 1–6). IEEE.

  10. Wood, R. (2014). Wireless network traffic worldwide: forecasts and analysis 2014–2019. Analysys Mason Limited, New Delhi, India, Technical Report.

  11. Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.

    Article  Google Scholar 

  12. Tuenge, J. R. (2013). SSL pricing and efficacy trend analysis for utility program planning. No. PNNL-22908. Pacific Northwest National Lab. (PNNL), Richland, WA (United States).

  13. Wu, S., Wang, H., & Youn, C.-H. (2014). Visible light communications for 5G wireless networking systems: From fixed to mobile communications. IEEE Network, 28(6), 41–45.

    Article  Google Scholar 

  14. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  15. Haas, H. (2017). LiFi is a paradigm-shifting 5G technology. Reviews in Physics, 3, 26–31.

    Article  Google Scholar 

  16. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2012). Optical wireless communications: system and channel modelling with Matlab ®. Cambridge: CRC Press.

    Google Scholar 

  17. Kraemer, R., & Katz, M. (Eds.). (2009). Short-range wireless communications: Emerging technologies and applications. New York: Wiley.

    Google Scholar 

  18. Randel, S., Breyer, F., Lee, S. C. J., & Walewski, J. W. (2010). Advanced modulation schemes for short-range optical communications. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1280–1289.

    Article  Google Scholar 

  19. Gfeller, F. R., & Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11), 1474–1486.

    Article  Google Scholar 

  20. Brien, D. O., Zeng, L., Minh, H. L., Faulkner, G., Bouchet, O., Randel, S., & Walewski, J. (2009). Visible light communication. In R. Kraemer & M. Katz (Eds.), Short-range wireless communications: Emerging technologies and applications. New Jersey: Wiley Publishing.

  21. Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using LED lights. IEEE Transactions on Consumer Electronics, 50, 100–107.

    Article  Google Scholar 

  22. Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298.

    Article  Google Scholar 

  23. Delgado, F., Quintana, I., & Rufo, J. (2010). Design and implementation of an EthernetVLC interface for broadcast transmissions. IEEE Communications Letters, 14(12), 1089–1091.

    Article  Google Scholar 

  24. Shiu, D. S., & Kahn, J. (1999). Differential pulse position modulation for power efficient optical communication. IEEE Transactions on Communications, 47(8), 1201–1210.

    Article  Google Scholar 

  25. IEEE Std. 802.15.7-2011. (2011). IEEE standard for local and metropolitan area networks, part 15.7: Short-range wireless optical communication using visible light. IEEE Std.

  26. Guerra, V., Suarez-Rodriguez, C., El-Asmar, O., Rabadan, J., & Perez-Jimenez, R. (2015). Pulse width modulated optical OFDM. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1333–1337). IEEE.

  27. Randel, S., Breyer, F., Lee, S. C. J., et al. (2010). Advanced modulation schemes for shortrange optical communications. IEEE Journal of Selected Topics in Quantum Electronics, PP(99), 1–10.

    Google Scholar 

  28. Pradana, A., Ahmadi, N., Adiono, T., Cahyadi, W. A., & Chung, Y.-H. (2015). VLC physical layer design based on Pulse Position Modulation (PPM) for stable illumination. In 2015 international symposium on intelligent signal processing and communication systems (ISPACS) (pp. 368–373). IEEE.

  29. Zeng, Y., Green, R., & Leeson, M. (2008). Multiple pulse amplitude and position modulation for the optical wireless channel. In 2008 10th anniversary international conference on transparent optical networks, Athens (pp. 193–196).

  30. Haigh, P., Le, S. T., Zvanovec, S., et al. (2015). Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communications, 22(2), 46–53.

    Article  Google Scholar 

  31. Komine, T., Haruyama, S., & Nakagawa, M. (2006). Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication. In Proceedings of international symposium on wireless pervasive computing.

  32. Afgani, M., Haas, H., Elgala, H., & Knipp, D. (2006). Visible light communication using OFDM. In Proceedings of 2nd international conference on testbeds and research infrastructures for the development of networks and communities. TRIDENTCOM (pp. 6–134).

  33. Dissanayake, S. D., & Armstrong, J. (2013). Comparison of aco-ofdm, dco-ofdm and ado-ofdm in im/dd systems. Journal of Lightwave Technology, 31(7), 1063–1072.

    Article  Google Scholar 

  34. Armstrong, J., & Lowery, A. (2006). Power efficient optical OFDM. Electronics Letters, 42(6), 370–372.

    Article  Google Scholar 

  35. Lee, S. C. J., Randel, S., & Breyer, F. (2009). PAM-DMT for intensitymodulated and directdetection optical communication systems. IEEE Photonics Technology Letters, 21(23), 1749–1751.

    Article  Google Scholar 

  36. Fernando, N., Hong, Y., & Viterbo, E. (2012). Flip-OFDM for unipolar communication systems. IEEE Transactions on Communications, 60(12), 3726–3733.

    Article  Google Scholar 

  37. Proakis, J. G., Salehi, M., Zhou, N., & Li, X. (1994). Communication systems engineering (Vol. 2). New Jersey: Prentice Hall.

    MATH  Google Scholar 

  38. Mossaad, M., Hranilovic, S., & Lampe, L. (2015). Visible light communications using OFDM and multiple LEDs. IEEE Transactions on Communications, 63(11), 4304–4313.

    Article  Google Scholar 

  39. Elgala, H., & Little, T. D. C. (2013). Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links. Optics Express, 21(20), 24288–24299.

    Article  Google Scholar 

  40. Dissanayake, S. D., Panta, K., & Armstrong, J. (2011). A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. In 2011 IEEE GLOBECOM workshops (GC Wkshps), Houston, TX (pp. 782–786).

  41. Ranjha, B., & Kavehrad, M. (2014). Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. IEEE/OSA Journal of Optical Communications and Networking, 6(4), 387–396.

    Article  Google Scholar 

  42. Elgala, H., & Little, T. D. C. (2014). P-OFDM: Spectrally efficient unipolar OFDM. In OFC 2014, San Francisco, CA (pp. 1–3).

  43. Elgala, H., & Little, T. D. C. (2015). Polar based OFDM and SC-FDE links toward energy efficient GBPS transmission under IM-DD optical system constraints invited. Journal of Optical Communications and Networking, 7(2), A277–A284.

    Article  Google Scholar 

  44. Wu, N., & Bar-Ness, Y. (2015). A novel powerefficient scheme asymmetrically and symmetrically clipping optical (ASCO)-OFDM for IM/DD optical systems. EURASIP Journal on Advances in Signal Processing, 2015(1), 1–10.

    Article  Google Scholar 

  45. Asadzadeh, K., Farid, A. A., & Hranilovic, S. (2011). Spectrally factorized optical OFDM. In 2011 12th Canadian workshop on information theory, Kelowna (pp. 102–105).

  46. Mao, T., Qian, C., Wang, Q., Quan, J., & Wang, Z. (2015). PM-DCO-OFDM for PAPR reduction in visible light communications. In 2015 opto-electronics and communications conference (OECC), Shanghai (pp. 1–3).

  47. Tsonev, D., & Haas, H. (2014). Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 3336–3341).

  48. Islim, M. S., Tsonev, D., & Haas, H. (2015). On the superposition modulation for OFDM-based optical wireless communication. In 2015 IEEE global conference on signal and information processing (GlobalSIP), Orlando, FL (pp. 1022–1026).

  49. Elgala, H., & Little, T. D. C. (2015). SEE-OFDM: Spectral and energy efficient OFDM for optical IM/DD systems. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), Washington DC (pp. 851–855).

  50. Wang, Q., Qian, C., & Guo, X. (2015). Layered ACO-OFDM for intensitymodulated directdetection optical wireless transmission. Optics Express, 23(9), 12382–12393.

    Article  Google Scholar 

  51. Kozu, T., & Ohuchi, K. (2015). Proposal for superposed ACO-OFDM using several even subcarriers. In 2015 9th international conference on signal processing and communication systems (ICSPCS), Cairns, QLD (pp. 1–5).

  52. Lowery, A. J. (2016). Comparisons of spectrallyenhanced asymmetricallyclipped optical OFDM systems. Optics Express, 24(4), 3950–3966.

    Article  Google Scholar 

  53. Islim, M. S., Tsonev, D., & Haas, H. (2015). Spectrally enhanced PAM-DMT for IM/DD optical wireless communications. In 2015 IEEE 26th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Hong Kong (pp. 877–882).

  54. Moreolo, M. S., Muñoz, R., & Junyent, G. (2010). Novel power efficient optical OFDM based on Hartley transform for intensitymodulated directdetection systems. Journal of Lightwave Technology, 28(5), 798–805.

    Article  Google Scholar 

  55. Huang, W., Gong, C., & Xu, Z. (2015). System and waveform design for wavelet packet division multiplexing-based visible light communications. Journal of Lightwave Technology, 33(14), 3041–3051.

    Google Scholar 

  56. Noshad, M., & Brandt-Pearce, M. (2016). Hadamard coded modulation for visible light communications. IEEE Transactions on Communications, PP(99), 1.

    Google Scholar 

  57. Wang, T. Q., & Huang, X. (2017). Fractional reverse polarity optical OFDM for high speed dimmable visible light communications. IEEE Transactions on Communications, PP(99), 1.

    Google Scholar 

  58. Bai, R., Wang, Q., & Wang, Z. (2017). Asymmetrically clipped absolute value optical OFDM for intensity-modulated direct-detection systems. Journal of Lightwave Technology, 35(17), 3680–3691.

    Article  Google Scholar 

  59. Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.

    Article  Google Scholar 

  60. Murata, N., Shimamoto, H., Kozawa, Y., & Umeda, Y. (2015). Performance evaluation of digital colour shift keying for visible light communications. In 2015 IEEE international conference on communication workshop (ICCW) (pp. 1374–1379). IEEE.

  61. Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.

    Article  Google Scholar 

  62. Rajó, F. A. D., Guerra, V., Borges, J. A. R., Torres, J. R., & Perez-Jimenez, R. (2014). Color shift keying communication system with a modified PPM synchronization scheme. IEEE Photonics Technology Letters, 26(18), 1851–1854.

    Article  Google Scholar 

  63. Farahneh, H., Mekhiel, C., Khalifeh, A., Farjow, W., & Fernando, X. (2016). Shadowing effects on visible light communication channels. In 2016 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–5). IEEE.

  64. Dong, Z., Shang, T., Gao, Y., & Li, Q. (2017). Study on VLC channel modeling under random shadowing. IEEE Photonics Journal, 9(6), 1–16.

    Google Scholar 

  65. Sewaiwar, A., Tiwari, S. V., & Chung, Y. H. (2015). Mobility support for full-duplex multiuser bidirectional VLC networks. IEEE Photonics Journal, 7(6), 1–9.

    Google Scholar 

  66. Burton, A., Minh, H. L., Ghasemlooy, Z., & Rajbhandari, S (2012). A study of LED lumination uniformity with mobility for visible light communications. In 2012 international workshop on optical wireless communications (IWOW) (pp. 1–3). IEEE.

  67. Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465–1473.

    Article  Google Scholar 

  68. Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R., & Ciaramella, E. (2012). 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 20(26), B501–B506.

    Article  Google Scholar 

  69. Tsonev, D., Sinanovic, S., & Haas, H. (2013). Complete modeling of nonlinear distortion in OFDM-based optical wireless communication. Journal of Lightwave Technology, 31(18), 3064–3076.

    Article  Google Scholar 

  70. Sheu, J.-S., Li, B.-J., & Lain, J.-K. (2017). LED non-linearity mitigation techniques for optical OFDM-based visible light communications. IET Optoelectronics, 11(6), 259–264.

    Article  Google Scholar 

  71. He, C., & Armstrong, J. (2017). Clipping noise mitigation in optical OFDM systems. IEEE Communications Letters, 21(3), 548–551.

    Article  Google Scholar 

  72. Zhou, J., Zhang, Z., Zhang, T., Guo, M., Tang, X., Wang, Z., et al. (2016). A combined PAPR-reduction technique for asymmetrically clipped optical OFDM system. Optics Communications, 366, 451–456.

    Article  Google Scholar 

  73. Singh, V. K., & Dalal, U. D. (2017). A Fast Hartley Transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation. Optics Communications, 400, 128–135.

    Article  Google Scholar 

  74. Xiao, W., Deng, H., Li, Y., & Jiang, S. (2017). PAPR reduction in VLC-OFDM system using a combination of shuffled frog leaping algorithm and hill-climbing algorithm. Wireless Personal Communications, 97(3), 3757–3771.

    Article  Google Scholar 

  75. Zafar, F., Karunatilaka, D., & Parthiban, R. (2015). Dimming schemes for visible light communication: the state of research. IEEE Wireless Communications, 22(2), 29–35.

    Article  Google Scholar 

  76. Wang, Q., Wang, Z., & Dai, L. (2015). Asymmetrical hybrid optical OFDM for visible light communications with dimming control. IEEE Photonics Technology Letters, 27(9), 974–977.

    Article  Google Scholar 

  77. Chung, Y. H., & Oh, S. (2013). Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light. In 2013 international symposium on intelligent signal processing and communications systems (ISPACS) (pp. 749–752). IEEE.

  78. Lourenço, N., Terra, D., Kumar, N., Alves, L. N., & Aguiar, R. L. (2012). Visible light communication system for outdoor applications. In 2012 8th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–6). IEEE.

  79. Islim, M. S., Videv, S., Safari, M., Xie, E., McKendry, J. J. D., Gu, E., Dawson, M. D., & Haas, H. (2018). The impact of solar irradiance on visible light communications. Journal of Lightwave Technology, 36(12), 2376–2386.

  80. Wang, Y., Wang, Y., Chi, N., Jianjun, Yu., & Shang, H. (2013). Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Optics Express, 21(1), 1203–1208.

    Article  Google Scholar 

  81. Lin, B., Tang, X., Yang, H., Ghassemlooy, Z., Zhang, S., Li, Y., et al. (2016). Experimental demonstration of IFDMA for uplink visible light communication. IEEE Photonics Technology Letters, 28(20), 2218–2220.

    Article  Google Scholar 

  82. Alresheedi, M. T., Hussein, A. T., & Elmirghani, J. M. H. (2017). Uplink design in VLC systems with IR sources and beam steering. IET Communications, 11(3), 311–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, P. A Comprehensive Survey of Visible Light Communication: Potential and Challenges. Wireless Pers Commun 109, 1357–1375 (2019). https://doi.org/10.1007/s11277-019-06616-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06616-3

Keywords

Navigation