Skip to main content
Log in

Cross Layer Power Control and User Pairing for DL Multi-antenna NOMA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In a previous study, Kim et al. proposed a suboptimal user pairing and optimal power control algorithm for maximizing sum capacity in downlink multi-antenna non-orthogonal multiple access (NOMA) systems. First, Kim et al. calculate the correlation between all users. If the channel correlation is greater than the threshold, the user’s channel gain difference is stored in the channel gain-difference set. Then, the first and second large channel gain-differences of the user pairs are selected from the set. Based on the user pairing of Kim et al. in the physical layer, we propose novel iterative user substitution algorithm where a user is substituted if the peak signal-to-noise ratio (PSNR), the video quality, in the application layer increases after substitution. And we propose an optimal power control that minimizes the sum video distortion to maximize PSNR in the application layer. The numerical results show that the proposed cross layer optimal power control and user substitution outperforms Kim et al. by 1.4 dB in PSNR and only 1 dB away from exhaustive upper bound, when SNR = 15 dB and the number of users is 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nandan, N., Majhi, S., & Wu, H. C. (2018). Secure beamforming for MIMO-NOMA-based cognitive radio network. IEEE Communications Letters,22(8), 1708–1711.

    Article  Google Scholar 

  2. Media Tek Inc. and CMCC (2016, March) Downlink multiuser superposition transmissions for LTE, 3GPP TSG RAN Meeting #71, Gothenburg, Sweden, Technical Report. RP-160680.

  3. “Study on downlink multiuser superposition transmission for LTE,” document, 3rd Generation Partnership Project (3GPP), March 2015.

  4. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine,55(2), 185–191.

    Article  Google Scholar 

  5. Zhang, L., Li, W., Wu, Y., Wang, X., Park, S. I., Kim, H. M., et al. (2016). Layered-division-multiplexing: Theory and practice. IEEE Transactions on Broadcasting,62(1), 216–232.

    Article  Google Scholar 

  6. Tseng, S. M., Hsu, Y. T., Chang, M. C., & Chan, H. L. (2006). A notebook PC based real-time software radio DAB receiver. IEICE Transactions on Communications,89(12), 3208–3214.

    Article  Google Scholar 

  7. Tomida, S., & Higuchi, K. (2011, December). Non-orthogonal access with SIC in cellular downlink for user fairness enhancement. In 2011 International symposium on intelligent signal processing and communications systems (ISPACS) (pp. 1–6). IEEE.

  8. Takeda, T., & Higuchi, K. (2011, September). Enhanced user fairness using non-orthogonal access with SIC in cellular uplink. In 2011 IEEE vehicular technology conference (VTC Fall) (pp. 1–5). IEEE.

  9. Islam, S. R., Avazov, N., Dobre, O. A., & Kwak, K. S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials,19(2), 721–742.

    Article  Google Scholar 

  10. Tabassum, H., Ali, M. S., Hossain, E., Hossain, M. J., & Kim, D. I. (2017, June). Uplink versus downlink NOMA in cellular networks: Challenges and research directions. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–7). IEEE.

  11. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proceedings of the IEEE,105(12), 2347–2381.

    Article  Google Scholar 

  12. Kim, B., Chung, W., Lim, S., Suh, S., Kwun, J., Choi, S., & Hong, D. (2015, May). Uplink NOMA with multi-antenna. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  13. Kim, B., Lim, S., Kim, H., Suh, S., Kwun, J., Choi, S., & Hong, D. (2013, November). Non-orthogonal multiple access in a downlink multiuser beamforming system. In MILCOM 2013–2013 IEEE military communications conference (pp. 1278–1283). IEEE.

  14. Chen, L. (2017, January) User selection and grouping algorithm design for beamforming in downlink NOMA systems. Master’s thesis, National Central University, Taoyuan, Taiwan.

  15. Cook, G. W., Prades-Nebot, J., Liu, Y., & Delp, E. J. (2006). Rate-distortion analysis of motion-compensated rate scalable video. IEEE Transactions on Image Processing,15(8), 2170–2190.

    Article  Google Scholar 

  16. Liu, D., Cui, H., Wu, J., & Luo, C. (2016). Resource allocation for uncoded multi-user video transmission over wireless networks. Mobile Networks and Applications,21(6), 950–961.

    Article  Google Scholar 

  17. Wang, D., Toni, L., Cosman, P. C., & Milstein, L. B. (2013). Uplink resource management for multiuser OFDM video transmission systems: Analysis and algorithm design. IEEE Transactions on Communications,61(5), 2060–2073.

    Article  Google Scholar 

  18. Tseng, S. M., Chen, Y. F., Chiu, P. H., & Chi, H. C. (2017). Jamming resilient cross-layer resource allocation in uplink HARQ-based SIMO OFDMA video transmission systems. IEEE Access,5, 24908–24919.

    Article  Google Scholar 

  19. Chen, Y. F., Tseng, S. M., Shen, C. H., & He, M. S. (2018). Cross Layer 1, 2 and 5 resource allocation in uplink turbo-coded HARQ Based OFDMA video transmission systems. Wireless Personal Communications,98(2), 1997–2008.

    Article  Google Scholar 

  20. Tseng, S. M., & Chen, Y. F. (2018). Average PSNR optimized cross layer user grouping and resource allocation for uplink MU-MIMO OFDMA video communications. IEEE Access,6, 50559–50571.

    Article  Google Scholar 

  21. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal on Selected Areas in Communications,18(6), 1012–1032.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 108-2221-E-027-033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Tseng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

From (8) and (9), the strong and weak user information rates are given by:

$$r_{n,1} \left( {\alpha_{n,1} } \right) = BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right).$$
(A-1)
$$r_{n,2} \left( {1 - \alpha_{n,1} } \right) = BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right).$$
(A-2)

where \(\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1}\) is from strong user interference.\(\left| {\varvec{h}_{n,2} \mathop \sum \limits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2}\) is from interference for other groups.\(P_{N}\) is power noise.

From (13), power control problem is formulated as follows (A-3):

$$\left[ {\alpha_{n,1}^{*} } \right] = arg\mathop {\hbox{min} }\limits_{{\left[ {\alpha_{n,1}^{*} } \right]}} \left\{ {f\left( {\alpha_{n,1} } \right)} \right\},\quad {\text{s}}.{\text{t }}g\left( {\alpha_{n,1} } \right) \le 0.$$
(A-3)

We use KKT conditions as follows (A-4):

  1. (i)
    $$\upmu \ge 0,$$
  2. (ii)
    $$D_{\alpha } f\left( {\alpha_{n} } \right) + \mu D_{\alpha } g\left( {\alpha_{n} } \right) = 0,$$
  3. (iii)
    $$\mu g\left( {\alpha_{n} } \right) = 0,$$
  4. (iv)
    $$g\left( {\alpha_{n} } \right) \le 0,$$
    (A-4)

Objective function (A-5) and restriction condition (A-6).

$$f\left( {\alpha_{n,1} } \right) = \alpha_{1} + \frac{{b_{1} }}{{r_{1} \left( {\alpha_{n,1} } \right) + c_{1} }} + \alpha_{2} + \frac{{b_{2} }}{{r_{2} \left( {1 - \alpha_{n,1} } \right) + c_{2} }}$$
(A-5)
$$g\left( {\alpha_{n,1} } \right) = \alpha_{1} + \frac{{b_{1} }}{{r_{1} \left( {\alpha_{n,1} } \right) + c_{1} }} + \alpha_{2} + \frac{{b_{2} }}{{r_{2} \left( {1 - \alpha_{n,1} } \right) + c_{2} }} - \left( {\alpha_{1} + \frac{{b_{1} }}{{\frac{{r_{1} \left( 1 \right)}}{2} + c_{1} }}} \right) \le 0.$$
(A-6)

(ii) Can be written as \(\left( {1 + \mu } \right)\left( {D_{\alpha } f\left( {\alpha_{n} } \right) + D_{\alpha } g\left( {\alpha_{n} } \right)} \right) = 0\). According to (i), it can be divided by \(\left( {1 + \mu } \right)\), (ii) becomes \(D_{\alpha } f\left( {\alpha_{n} } \right) + D_{\alpha } g\left( {\alpha_{n} } \right) = 0\). The derivative of \(f\left( {\alpha_{n,1} } \right)\) and \(g\left( {\alpha_{n,1} } \right)\) with respect to \(\alpha_{n,1}\), because the two differentials are the same result, so (ii) becomes \(D_{\alpha } f\left( {\alpha_{n,1} } \right) = 0\).

Substituting (A-1) and (A-2) into (A-5), and we get:

$$\begin{aligned} f\left( {\upalpha_{n,1} } \right) & = a_{1} + \frac{{b_{1} }}{{BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right) + c_{1} }} + a_{2} \\ & \quad + \frac{{b_{2} }}{{BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right) + c_{2} }} \\ \end{aligned}$$
(A-7)

Differential with respect to \(\upalpha_{n,1}\) and get

$$\begin{aligned} D_{\alpha} f\left( {{\upalpha }_{n,1} } \right) & = - b_{1} \frac{{\partial \left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right)} \right)}}{{\left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right) + c_{1} } \right)^{2} }} \\ & \quad - \;b_{2} \frac{{\partial \left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right)} \right)}}{{\left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right) + c_{2} } \right)^{2} }} = 0 \\ \end{aligned}$$
(A-8)

Expanding the numerator part:

$$\begin{aligned} D_{\alpha } f\left( {{\upalpha }_{n,1} } \right) & = - b_{1} \frac{{BW \times \frac{1}{\ln 2}\frac{{\frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} P_{n,1} }}{{P_{N} }}}}{{1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}}}}}{{\left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right) + c_{1} } \right)^{2} }} \\ & \quad - \; b_{2} \frac{{BW \times \frac{1}{\ln 2}\frac{{\frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( { - 1} \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}}}{{1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}}}}}{{\left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \left( {1 - \alpha_{n,1} } \right)P_{n,2} }}{{\left| {\varvec{h}_{n,2} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} + \left| {\varvec{h}_{n,2} \mathop \sum \nolimits_{k = 1,k \ne n}^{N} \varvec{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right) + c_{2} } \right)^{2} }} = 0 \\ \end{aligned}$$
(A-9)

Simplify the numerator part:

$$\begin{aligned} D_{\alpha } f\left( {\alpha_{n,1} } \right) & = - b_{1} \frac{{\frac{1}{\ln 2} \frac{{\eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} P_{n,1} }}{{ P_{N} + \eta \left| {\varvec{h}_{n,1} \varvec{w}_{n} } \right|^{2} \alpha_{n,1} P_{n,1} }}}}{{\left( {BW \times \log_{2} \left( {1 + \frac{{\eta \left| {\varvec{h}_{n,1} } \right|^{2} \alpha_{n,1} P_{n,1} }}{{P_{N} }}} \right) + c_{1} } \right)^{2} }} \\ & \quad + b_{2} \frac{{\frac{1}{{\ln 2}}~~\frac{{\eta \left| {\user2{h}_{{n,2}} \user2{w}_{n} } \right|^{2} P_{{n,2}} }}{{\left| {\user2{h}_{{n,2}} \user2{w}_{n} } \right|^{2} \alpha _{{n,1}} P_{{n,1}} + \left| {\user2{h}_{{n,2}} \mathop \sum \nolimits_{{k = 1,k \ne n}}^{N} \user2{w}_{k} x_{k} } \right|^{2} + \eta \left| {\user2{h}_{{n,2}} \user2{w}_{n} } \right|^{2} \left( {1 - \alpha _{{n,1}} } \right)P_{{n,2}} + P_{N} }}}}{{\left( {BW \times \log _{2} \left( {1 + \frac{{\eta \left| {\user2{h}_{{n,2}} \user2{w}_{n} } \right|^{2} \left( {1 - \alpha _{{n,1}} } \right)P_{{n,2}} }}{{\left| {\user2{h}_{{n,2}} \user2{w}_{n} } \right|^{2} \alpha _{{n,1}} P_{{n,1}} + \left| {\user2{h}_{{n,2}} \mathop \sum \nolimits_{{k = 1,k \ne n}}^{N} \user2{w}_{k} x_{k} } \right|^{2} + P_{N} }}} \right) + c_{2} } \right)^{2} }} = 0\\ \end{aligned}$$
(A-10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, SM., Chen, YF. & Liu, KC. Cross Layer Power Control and User Pairing for DL Multi-antenna NOMA. Wireless Pers Commun 109, 1541–1556 (2019). https://doi.org/10.1007/s11277-019-06626-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06626-1

Keywords

Navigation