Skip to main content
Log in

Miniaturized Microstrip Patch Antenna Array for ISM Band Using Complementary Split Ring Resonator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

These days patch antenna arrays are widely used in various communication systems. In this research design of miniaturized microstrip patch antenna array is presented. Miniaturization is achieved by reducing the mutual coupling between patch antenna elements. Complementary Split Ring Resonator is used to reduce the mutual coupling between patch elements in array. The mutual coupling between patch elements with and without resonator is calculated using High Frequency Structure Simulator. It has been observed that the mutual coupling between elements is reduced by 20 dB at 2.4 GHz by using resonator. Due to reduction in mutual coupling, patch antenna elements can be fabricated in less space which leads to compact antenna array system design. A miniaturization of 4.34% is achieved for two element Patch array without affecting the power gain and directivity of patch antenna array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nikolic, M. M., Djordjevic, A. R., & Nehorai, A. (2005). Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling. IEEE Transactions on Antennas and Propagation,53, 3469–3476.

    Article  Google Scholar 

  2. Alexopoulos, N., & Jackson, D. (1984). Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Transactionson Antennas and Propagation,32, 807–816.

    Article  Google Scholar 

  3. Sievenpiper, D., Lijun, Z., Broas, R. F. J., Alexopolous, N. G. A. A. N. G., & Yablonovitch, E. A. Y. E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques,47, 2059–2074.

    Article  Google Scholar 

  4. Ang, Y & Xuexia, Z. (2002). A novel 2-D electromagnetic band-gap structure and its application in micro-strip antenna arrays. In 3rd international conference on microwave and millimeter wave technology proceedings (pp. 580–583).

  5. Fan, Y., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation,51, 2936–2946.

    Article  Google Scholar 

  6. Abedin, M. F., & Ali, M. (2005). Reducing the mutual-coupling between the elements of a printed dipole array using planar EBG structures. IEEE Antennas and Propagation Society International Symposium,2A, 598–601.

    Article  Google Scholar 

  7. Falcone, F., Lopetegi, T., Baena, J. D., Marques, R., Martin, F., & Sorolla, M. (2004). Effective negative-ε stopband microstrip lines based on complementary split-ring resonators. IEEE Microwave and Wireless Components Letters,14, 280–282.

    Article  Google Scholar 

  8. Burokur, S. N., Latrach, M., & Toutain, S. (2005). Study of the effect of dielectric split-ring resonators on microstrip-line transmission. Microwave and Optical Technology Letters,44, 445–448.

    Article  Google Scholar 

  9. Garcia-Garcia, J., Bonache, J., Gil, I., Martin, F., Marques, R., Falcone, F., et al. (2005). Comparison of electromagnetic band gap and split-ring resonator microstrip lines as stop band structures. Microwave and Optical Technology Letters,44, 376–379.

    Article  Google Scholar 

  10. Garcia-Garcia, J., Martin, F., Falcone, F., Bonache, J., Baena, J. D., Gil, I., et al. (2005). Microwave filters with improved stopband based on sub-wavelength resonators. IEEE Transactions on Microwave Theory and Techniques,53, 1997–2006.

    Article  Google Scholar 

  11. Martel, J., Marques, R., Falcone, F., Baena, J. D., Medina, F., Martin, F., et al. (2004). A new LC series element for compact bandpass filter design. IEEE Microwave and Wireless Components Letters,14, 210–212.

    Article  Google Scholar 

  12. Bonache, J., Martin, F., Gil, I., Garcia-Garcia, J., Marques, R., & Sorolla, M. (2005). Microstrip bandpass filters with wide bandwidth and compact dimensions. Microwave and Optical Technology Letters,46, 343–346.

    Article  Google Scholar 

  13. Bonache, J., Gil, I., Garcia-Garcia, J., & Martin, F. (2006). Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Transactions on Microwave Theory and Techniques,54, 265–271.

    Article  Google Scholar 

  14. Garg, R., Bahal, I., & Bozzi, M. Microstrip lines and slotlines (Book 2013)  (3rd Ed.), Artech house microwave library.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monish Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Mittal, V., Saxena, J. et al. Miniaturized Microstrip Patch Antenna Array for ISM Band Using Complementary Split Ring Resonator. Wireless Pers Commun 109, 2251–2262 (2019). https://doi.org/10.1007/s11277-019-06679-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06679-2

Keywords

Navigation