Skip to main content
Log in

Iterative Self-Interference Mitigation in Full-Duplex Wireless Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper considers a full-duplex wireless communication system in which detection of the desired signal is hindered not only by the self-interference (SI), but also phase noise, in-phase and quadrature-phase imbalance and power amplifier’s nonlinearity distortion. An iterative algorithm is proposed in which the processes of SI cancellation and detection of the desired signal aid each other in each iteration. In each iteration, the SI cancellation process performs widely linear estimation of the SI channel and compensates for physical impairments to improve the detection performance of the desired signal. The detected desired signal is in turn removed from the received signal to improve SI channel estimation and SI cancellation in the next iteration. Simulation results show that the proposed algorithm significantly outperforms existing algorithms in SI cancellation and detection of the desired signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409.

    Article  Google Scholar 

  2. Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.

    Article  Google Scholar 

  3. Duarte, M., & Sabharwal, A. (2010). Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results. The forty fourth Asilomar conference on signals, systems and computers, pp. 1558–1562.

  4. Duarte, M., Dick, C., & Sabharwal, A. (2012). Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 11(12), 4296–4307.

    Article  Google Scholar 

  5. Li, S., & Murch, R. D. (2014). An investigation into baseband techniques for single-channel full-duplex wireless communication systems. IEEE Transactions on Wireless Communications, 13(9), 4794–4806.

    Article  Google Scholar 

  6. Korpi, D., Anttila, L., Syrjala, V., & Valkama, M. (2014). Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE Journal on Selected Areas in Communications, 32(9), 1674–1687.

    Article  Google Scholar 

  7. Ahmed, E., & Eltawil, A. M. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.

    Article  Google Scholar 

  8. Syrjala, V., Valkama, M., Anttila, L., Riihonen, T., & Korpi, D. (2014). Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers. IEEE Transactions on Wireless Communications, 13(6), 2977–2990.

    Article  Google Scholar 

  9. Quan, X., Liu, Y., Shao, S., Huang, C., & Tang, Y. (2017). Impacts of phase noise on digital self-interference cancellation in full-duplex communications. IEEE Transactions on Signal Processing, 65(7), 1881–1893.

    Article  MathSciNet  Google Scholar 

  10. Samara, L., Mokhtar, M., Ozdemir, O., Hamila, R., & Khattab, T. (2017). Residual self-interference analysis for full-duplex OFDM transceivers under phase noise and I/Q imbalance. IEEE Communications Letters, 21(2), 314–317.

    Article  Google Scholar 

  11. Austin, A. C. M., Balatsoukas-Stimming, A., & Burg, A. (2016). Digital predistortion of power amplifier non-linearities for full-duplex transceivers. 2016 IEEE 17th international workshop on signal processing advances in wireless communications, pp. 1–5.

  12. Anttila, L., Korpi, D., Syrjala, V., & Valkama, M. (2013). Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers. 2013 Asilomar conference on signals, systems and computers, pp. 1193–1198.

  13. Schenk, T. (2008). RF imperfections in high-rate wireless systems: Impact and digital compensation. Dordrecht: Springer.

    Book  Google Scholar 

  14. Rice, M. (2009). Digital communications: A discrete-time approach. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  15. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  16. Demir, A., Mehrotra, A., & Roychowdhury, J. (2000). Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(5), 655–674.

    Article  Google Scholar 

  17. Petrovic, D., Rave, W., & Fettweis, G. (2007). Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. IEEE Transactions on Communications, 55(8), 1607–1616.

    Article  Google Scholar 

  18. Zhao, S., Zhu, X., Wang, H., & Wu, L. (2013). Analysis of joint effect of phase noise, IQ imbalance and amplifier nonlinearity in OFDM system. In International conference on wireless communications and signal processing, pp. 1–6.

  19. Banelli, P., & Cacopardi, S. (2000). Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels. IEEE Transactions on Communications, 48(3), 430–441.

    Article  Google Scholar 

  20. Bussgang, J. J. (1952). Crosscorrelation functions of amplitude distorted Gaussian signals. Cambridge: Research Laboratory of Electronics, Massachusetts Institute of Technology.

    Google Scholar 

  21. Zou, Q. (2008). Signal processing for RF distortion compensation in wireless communication systems. Ph.D. Dissertation, University of California, Los Angeles.

  22. Tubbax, J., Come, B., Van der Perre, L., Donnay, S., Engels, M., De Man, H., et al. (2005). Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Transactions on Wireless Communications, 4(3), 872–877.

    Article  Google Scholar 

  23. Tubbax, J., Come, B., Van der Perre, L., Donnay, S., Engels, M., & Desset, C. (2003). Joint compensation of IQ imbalance and phase noise. In The 57th IEEE semiannual vehicular technology conference (Vol. 3, pp. 1605–1609).

  24. Garcia, M. J. F. G., Paez-Borrallo, J. M., Zazo, S. (2001). DFT-based channel estimation in 2D-pilot-symbol-aided OFDM wireless systems. In 53rd IEEE vehicular technology conference (Vol. 2, pp. 810–814).

  25. Kang, Y., Kim, K., & Park, H. (2007). Efficient DFT-based channel estimation for OFDM systems on multipath channels. IET Communications, 1(2), 197–202.

    Article  Google Scholar 

  26. Hou, X., Zhang, Z., & Kayama, H. (2007). Low-complexity enhanced DFT-based channel estimation for OFDM systems with virtual subcarriers. In IEEE 18th international symposium on personal, indoor and mobile radio communications, pp. 1–5 .

  27. Doukopoulos, X. G., & Legouable, R. (2007). Robust channel estimation via FFT interpolation for multicarrier systems. In IEEE 65th vehicular technology conference, pp. 1861–1865.

  28. Erceg, V., et al. (2004). IEEE P802.11 wireless LANs.

  29. Li, W., Lilleberg, J., & Rikkinen, K. (2014). On rate region analysis of half- and full-duplex OFDM communication links. IEEE Journal on Selected Areas in Communications, 32(9), 1688–1698.

    Article  Google Scholar 

  30. Smaini, L. (2012). RF analog impairments modeling for communication systems simulation: Application to OFDM-based transceivers. London: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long D. Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Derivation of Eq. (2)

Refering to Fig. 1, after DAC, the signal w(t) is up-converted to a carrier frequency \(f_c\) with quadrature mixers. In the perfect matching case between the I and Q branches, the output of the LO would be

$$\begin{aligned} z_p(t)=\sqrt{2}w_I(t)\cos {\left( 2\pi f_c t\right) }-\sqrt{2}w_Q(t)\sin {\left( 2\pi f_c t\right) } \end{aligned}$$
(29)

However, the LO is not ideal in practice which results in phase noise and IQ imbalance impairments. Denoting by \(\alpha _T\), \(\theta _T\) and \(\phi _T(t)\) the gain, phase imbalance related to the IQ imbalance impairment and phase offset related to the phase noise impairment, respectively. In practice, \(\alpha _T\) and \(\theta _T\) are static paremeters, while \(\phi _T(t)\) is changing in time. Thus, the output of the LO can be represented as

$$\begin{aligned} \begin{aligned} z_p(t)=&\sqrt{2}(1+\alpha _T)w_I(t)\cos {\left( 2\pi f_c t+\frac{\theta _T}{2}+\phi _T(t)\right) }\\&-\sqrt{2}(1-\alpha _T)w_Q(t)\sin {\left( 2\pi f_c t-\frac{\theta _T}{2}+\phi _T(t)\right) }\\ \end{aligned} \end{aligned}$$
(30)

The expression in (30) can be expanded as in (31)

$$\begin{aligned} \begin{aligned} z_p(t)=&\sqrt{2}(1+\alpha _T)w_I(t)\left( \frac{{{\mathrm {e}}}^{j\left( 2\pi f_ct+\frac{\theta _T}{2}+\phi _T(t)\right) }+{{\mathrm {e}}}^{-j\left( 2\pi f_ct+\frac{\theta _T}{2}+\phi _T(t)\right) }}{2}\right) \\&-\sqrt{2}(1-\alpha _T)w_Q(t)\left( \frac{{{\mathrm {e}}}^{j\left( 2\pi f_ct-\frac{\theta _T}{2}+\phi _T(t)\right) }-{{\mathrm {e}}}^{-j\left( 2\pi f_ct-\frac{\theta _T}{2}+\phi _T(t)\right) }}{2j}\right) \\ =&\sqrt{2}{{\mathrm {e}}}^{j(2\pi f_ct+\phi _T(t))}\left( (1+\alpha _T)w_I(t)\frac{{{\mathrm {e}}}^{j\frac{\theta _T }{2}}}{2}-(1-\alpha _T)w_Q(t)\frac{{{\mathrm {e}}}^{-j\frac{\theta _T}{2}}}{2j}\right) \\&+\sqrt{2}{{\mathrm {e}}}^{-j(2\pi f_ct+\phi _T(t))}\left( (1+\alpha _T)w_I(t)\frac{{{\mathrm {e}}}^{-j\frac{\theta _T}{2}}}{2}+(1-\alpha _T)w_Q(t)\frac{{{\mathrm {e}}}^{j\frac{\theta _T}{2}}}{2j}\right) \\ =&\frac{1}{\sqrt{2}}{{\mathrm {e}}}^{j(2\pi f_ct+\phi _T(t))}\underbrace{\left( (1+\alpha _T)w_I(t){{\mathrm {e}}}^{j\frac{\theta _T }{2}}+j(1-\alpha _T)w_Q(t){{\mathrm {e}}}^{-j\frac{\theta _T}{2}}\right) }_{I_1}\\&+\frac{1}{\sqrt{2}}{{\mathrm {e}}}^{-j(2\pi f_ct+\phi _T(t))}\underbrace{\left( (1+\alpha _T)w_I(t){{\mathrm {e}}}^{-j\frac{\theta _T}{2}}-j(1-\alpha _T)w_Q(t){{\mathrm {e}}}^{j\frac{\theta _T}{2}}\right) }_{I_2}\\ \end{aligned} \end{aligned}$$
(31)

The term \(I_1\) can be rewritten as

$$\begin{aligned} \begin{aligned} I_1=&(1+\alpha _T)w_I(t){{\mathrm {e}}}^{j\frac{\theta _T }{2}}+j(1-\alpha _T)w_Q(t){{\mathrm {e}}}^{-j\frac{\theta _T}{2}}\\& =\left( 1+\alpha _T\right) \frac{w(t)+w^*(t)}{2}\left( \cos \frac{\theta _T}{2}+j\sin \frac{\theta _T}{2}\right) \\&+ j\left( 1-\alpha _T\right) \frac{w(t)-w^*(t)}{2j}\left( \cos \frac{\theta _T}{2}-j\sin \frac{\theta _T}{2}\right) \\ &=\left( \cos \frac{\theta _T}{2}+j\alpha _T\sin \frac{\theta _T}{2}\right) w(t)\\&+\left( \alpha _T\cos \frac{\theta _T}{2}+j\sin \frac{\theta _T}{2}\right) w^*(t) \end{aligned} \end{aligned}$$
(32)

Define

$$\begin{aligned} \begin{aligned} \xi _T&=\cos \frac{\theta _T}{2}+j\alpha _T\sin \frac{\theta _T}{2}\\ \eta _T&=\alpha _T\cos \frac{\theta _T}{2}+j\sin \frac{\theta _T}{2} \end{aligned} \end{aligned}$$
(33)

Then

$$\begin{aligned} I_1=\xi _T w(t) + \eta _T w^{*}(t). \end{aligned}$$
(34)

A similar expression can be obtained for \(I_2\) and it is simple to show that

$$\begin{aligned} I_2 = I_1^* \end{aligned}$$
(35)

Finally,

$$\begin{aligned} \begin{aligned} z_p(t) =&\frac{1}{\sqrt{2}}{{\mathrm {e}}}^{j2\pi f_ct}\left[ {{\mathrm {e}}}^{j\phi _T(t)}\left( \xi _T w(t) + \eta _T w^{*}(t)\right) \right] \\&+\frac{1}{\sqrt{2}}{{\mathrm {e}}}^{-j2\pi f_ct}\left[ {{\mathrm {e}}}^{j\phi _T(t)}\left( \xi _T w(t) + \eta _T w^{*}(t)\right) \right] ^{*}\\ =&\sqrt{2}\mathfrak {R}\left\{ {{\mathrm {e}}}^{j\phi _T(t)}\left( \xi _T w(t) + \eta _T w^{*}(t)\right) {{\mathrm {e}}}^{j2\pi f_ct}\right\} \\ =&\sqrt{2}\mathfrak {R}\left\{ z(t){{\mathrm {e}}}^{j2\pi f_c t}\right\} \end{aligned} \end{aligned}$$
(36)

The above expression means that the complex baseband equivalent signal of \(z_p(t)\) is \(z(t)={{\mathrm {e}}}^{j\phi _T(t)}\left( \xi _T w(t) + \eta _T w^{*}(t)\right)\).

1.2 Derivation of Eq. (16)

From (1), (2), and (8) one obtains

$$\begin{aligned} \begin{aligned} u(t) =\,&\alpha {\mathrm {e}}^{j\phi _T(t)}\left( \xi _T w(t)+\eta _Tw^*(t)\right) + d(t)\\ {\mathop {=}\limits ^{(1)}}\,&\alpha {\mathrm {e}}^{j\phi _T(t)}\left( \xi _T \sum \limits _{l=0}^{N-1}x(l)q(t-lT_s)\right. \\&\quad +\left. \eta _T \sum \limits _{l=0}^{N-1}x^*(l)q(t-lT_s)\right) + d(t)\\ \end{aligned} \end{aligned}$$
(37)

Thus

$$\begin{aligned} \begin{aligned} u(kT_s) =\,&u(t)\biggr |_{t=kT_s}\\ =\,&\alpha {\mathrm {e}}^{j\phi _T(kT_s)}\left( \xi _T \sum \limits _{l=0}^{N-1}x(l)q(kT_s-lT_s)\right. \\&\quad +\left. \eta _T \sum \limits _{l=0}^{N-1}x^*(l)q(kT_s-lT_s)\right) + d(kT_s)\\ \end{aligned} \end{aligned}$$
(38)

Dropping \(T_s\) in (38) results in

$$\begin{aligned} \begin{aligned} u(k)&=\alpha {\mathrm {e}}^{j\phi _T(k)}\left( \xi _T \sum \limits _{l=0}^{N-1}x(l){\tilde{q}}(k-l)+\eta _T \sum \limits _{l=0}^{N-1}x^*(l)\tilde{q}(k-l)\right) + d(k)\\ \end{aligned} \end{aligned}$$
(39)

in which \(\tilde{q}(n)\) is obtained by downsampling q(n) with factor F, \(n = 0,\ldots ,M-1\).

From (39), \(y_1(k)\) is written as (40)

$$\begin{aligned} \begin{aligned} y_1(k)=\,&h(k)*\left( \alpha {\mathrm {e}}^{j\phi _T(k)}\left( \xi _T \sum \limits _{l=0}^{N-1}x(l)\tilde{q}(k-l)+\eta _T \sum \limits _{l=0}^{N-1}x^*(l)\tilde{q}(k-l)\right) + d(k)\right) \\ =\,&\alpha \xi _T h(k)*\left( {\mathrm {e}}^{j\phi _T(k)} \sum \limits _{l=0}^{N-1}x(l)\tilde{q}(k-l)\right) \\&+\alpha \eta _T h(k)*\left( {\mathrm {e}}^{j\phi _T(k)}\sum \limits _{l=0}^{N-1}x^*(l)\tilde{q}(k-l)\right) + h(k)*d(k)\\ =\,&\alpha \xi _T \sum \limits _{i=0}^{N-1}\left( {\mathrm {e}}^{j\phi _T(i)} \sum \limits _{l=0}^{N-1}x(l)\tilde{q}(i-l)\right) h(k-i)\\&+\alpha \eta _T \sum \limits _{i=0}^{N-1}\left( {\mathrm {e}}^{j\phi _T(i)}\sum \limits _{l=0}^{N-1}x^*(l)\tilde{q}(i-l)\right) h(k-i) + h(k)*d(k)\\ \end{aligned} \end{aligned}$$
(40)

With the definition of matrices \({\mathbf {Q}}\), \({\mathbf {H}}\) and \({\mathbf {P}}_T\) in Sect. 2, (40) is rewritten compactly as

$$\begin{aligned} {\mathbf {y}}_1 = \alpha \xi _T {\mathbf {H}}{\mathbf {P}}_T{\mathbf {Q}}{\mathbf {x}} + \alpha \eta _T {\mathbf {H}}{\mathbf {P}}_T{\mathbf {Q}}{\mathbf {x}}^{*} \end{aligned}$$
(41)

where \({\mathbf {y}}_1 = \begin{bmatrix} y_1(0)&y_1(1)&\cdots&y_1(N-1) \end{bmatrix}^T\). Similarly, \(y_2(k)\) can be compactly written as \({\mathbf {y}}_2 = {\mathbf {G}}{\mathbf {Q}}{\mathbf {c}}\), where \({\mathbf {G}}\) and \({\mathbf {c}}\) are defined as in Sect. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, L.D., Nguyen, H.H. Iterative Self-Interference Mitigation in Full-Duplex Wireless Communications. Wireless Pers Commun 109, 2663–2682 (2019). https://doi.org/10.1007/s11277-019-06702-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06702-6

Keywords

Navigation