Skip to main content
Log in

Performance Comparison of 2 × 20 Gbit/s-40 GHz OFDM Based RoFSO Transmission Link Incorporating MDM of Hermite Gaussian Modes Using Different Modulation Schemes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The shortage of radio frequency spectrum for wireless communication networks has been addressed by using millimeter wave (mm-wave) transmission in optical-wireless and Radio over Free space optics (RoFSO) links. This work reports the performance comparison of 4-level quadrature amplitude modulation (QAM) and phase shift keying (PSK) based orthogonal frequency division multiplexing-RoFSO transmission link under the effect of atmospheric turbulence. Two independent 20 Gbit/s-40 GHz information signals are transmitted over distinct Hermite Gaussian modes (HG01 and HG03) under heavy fog conditions using different modulation schemes over a link range of 2000 m. The results presented show that 4-QAM scheme performs better as compared to 4-PSK scheme. Also, we report the modal decomposition of the transmitted channels in terms of linear polarized modes at the receiver terminal. The proposed work can be used for realizing long-reach high-capacity bandwidth efficient information transmission links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Chaudhary, S., Lin, B., Tang, X., Wei, X., Zhou, Z., Lin, C., et al. (2018). 40 Gbps-80 GHz PSK-MDM based Ro-FSO transmission system. Optical and Quantum Electronics,50, 321.

    Article  Google Scholar 

  2. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials,16(4), 2231–2258.

    Article  Google Scholar 

  3. Mahdy, A., & Deogun, J. S. (2004). Wireless optical communications: A survey. Proceedings of IEEE Wireless Communications and Networking Conference,4, 2399–2404.

    Google Scholar 

  4. Nykolak, G., Szajowski, P. F., Tourgee, G., & Presby, H. (1999). 2.5 Gbit/s free space optical link over 4.4 km. Electronic Letters,35(7), 578–579.

    Article  Google Scholar 

  5. Al-Gailani, S. A., Mohammad, A. B., & Shaddad, R. Q. (2012). Evaluation of a 1 Gb/s free space optic system in typical malaysian weather. In Proceedings of IEEE 3rd international conference on photonics (pp. 121–124).

  6. Ramezani, A., Noroozi, M. R., & Aghababaee, M. (2014). Analyzing free space optical communication performance. International Journal of Engineering and Advanced Technology,4(1), 46–51.

    Google Scholar 

  7. Sharma, V., & Kaur, G. (2013). High speed long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik,124, 6111–6114.

    Article  Google Scholar 

  8. Naila, C. B., et al. (2011). Transmission analysis of M-ary phase shift keying multiple-subcarrier modulation signals over radio-onfree-space optical channel with aperture averaging. Optical Engineering,50, 105006.

    Article  Google Scholar 

  9. Kanno, A., et al. (2011). 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Optics Express,19, B56–B63.

    Article  Google Scholar 

  10. Al-Khafaji, H., et al. (2013). Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique. Journal of the European Optical Society,8, 1–5.

    Article  Google Scholar 

  11. Tang, X., Ghassemlooy, Z., Rajbhandari, S., Popoola, W. O., & Lee, C. G. (2012). Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. Lightwave Technology Journal of,30(16), 2689–2695.

    Article  Google Scholar 

  12. Zhou, H., et al. (2014). Optical power allocation for adaptive WDM transmissions in free space optical networks. In 2014 IEEE wireless communications and networking conference (WCNC) (pp. 2677–2682). IEEE.

  13. Amphawan, A., Mishrab, V., Nisaran, K., & Nedniyomc, B. (2012). Realtime holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. Journal of Modern Optics,59, 1745–1752.

    Article  Google Scholar 

  14. Amphawan, A. (2011). Binary encoded computer generated holograms for temporal phase shifting. Optics Express,19, 23085–23096.

    Article  Google Scholar 

  15. Jung, Y., Chen, R., Ismaeel, R., Brambilla, G., Alam, S. U., Giles, I. P., et al. (2013). Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Optics Express,21, 24326–24331.

    Article  Google Scholar 

  16. Amphawan, A., Benjaporn, N., & Nashwan, M. A. S. (2014). Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. Journal of Modern Optics,60, 1–9.

    Google Scholar 

  17. Chaudhary, S., & Amphawan, A. (2018). High speed MDM-Ro-FSO communication system by incorporating AMI scheme. International Journal of Electronics Letters. https://doi.org/10.1080/21681724.2018.1494318.

    Article  Google Scholar 

  18. Chaudhary, S., Tang, X., & Wei, X. (2018). Comparison of Laguerre-Gaussian and Donut modes for MDM-WDM in OFDM-Ro-FSO transmission system. AEU - International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2018.06.024.

    Article  Google Scholar 

  19. Chaudhary, S., & Amphawan, A. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications. https://doi.org/10.1007/s11107-018-0778-4.

    Article  Google Scholar 

  20. Chaudhary, S., & Amphawan, A. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics. https://doi.org/10.1088/1555-6611/aabd15.

    Article  Google Scholar 

  21. Chaudhary, S., & Amphawan, A. (2018). High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photonic Network Communications. https://doi.org/10.1007/s11107-017-0752-6.

    Article  Google Scholar 

  22. Chaudhary, S., & Amphawan, A. (2017). High-speed millimeter communication through radio-over-free-space-optics network by mode-division multiplexing. Optical Engineering,56, 1. https://doi.org/10.1117/1.OE.56.11.116112.

    Article  Google Scholar 

  23. Chaudhary, S. (2017). Optimization of AMI-MDM-RoFSO under atmospheric turbulence. In The European physical journal conferences.

    Article  Google Scholar 

  24. Sarangal, H., Singh, A., Malhotra, J., & Chaudhary, S. (2017). A cost effective 100 Gbps hybrid MDM–OCDMA–FSO transmission system under atmospheric turbulences. Optical and Quantum Electronics,49, 184. https://doi.org/10.1007/s11082-017-1019-2.

    Article  Google Scholar 

  25. Kaur, D., & Chaudhary, S. (2016). 4 × 10 GBPS cost effective hybrid OADM-MDM short haul interconnects. Microwave and Optical Technology Letters.,58, 1613–1617. https://doi.org/10.1002/mop.29869.

    Article  Google Scholar 

  26. Amphawan, A., & Chaudhary, S. (2015). Hermite-Gaussian mode division multiplexing for free-space optical interconnects. Advanced Science Letters. https://doi.org/10.1166/asl.2015.6532.

    Article  Google Scholar 

  27. Optiwave, Optisystem, Ottawa, Canada, 2014.

  28. Ghatak, A., & Thyagarajan, K. (1998). An introduction to fiber optics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  29. Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laser wireless links. Journal of Lightwave Technology,30, 2735–3727.

    Article  Google Scholar 

  30. Mourka, A., et al. (2013). Modal characterization using principal component analysis: Application to bessel, higher-order gaussian beams and their superposition. Scientific Reports,3, 1422.

    Article  Google Scholar 

  31. Amphawan, A., et al. (2010). Modal decomposition of output field from holographic mode field generation in a multimode fiber channel. In IEEE International Conference on Photonics (ICP) (pp. 1–5). IEEE, Langkawi,.

  32. Ghassemlooy, Z., & Popoola, W. O. (2010). Terrestrial free space optical communications. In S. A. Fares & F. Adachi (Eds.), Mobile and wireless communication network layer and circuit level design. New York: InTech.

    Google Scholar 

  33. Kim, I., Mcarthur, B., & Korevaar, E. (2006). Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for optical wireless communications. In Proceedings of SPIE optical wireless communication (vol. 6303).

  34. Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission, and detection. Hoboken: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Malhotra, J. Performance Comparison of 2 × 20 Gbit/s-40 GHz OFDM Based RoFSO Transmission Link Incorporating MDM of Hermite Gaussian Modes Using Different Modulation Schemes. Wireless Pers Commun 110, 699–711 (2020). https://doi.org/10.1007/s11277-019-06750-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06750-y

Keywords

Navigation