Skip to main content
Log in

Improved Underwater Horizontal Ranging Algorithm using Reflected Acoustic Wave

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose an underwater ranging algorithm that estimates horizontal distance using reflected acoustic waves that have the largest sound pressure. We calculate sound pressure of received waves along the horizontal distance, and generate a table for the horizontal distance section according to the number of reflections of the largest sound pressure wave. We also estimate candidate distances based on the number of reflections and on ray tracing. Estimated horizontal distance can be derived by comparing the candidate distances with the generated table. We show that the proposed scheme is useful in long range environments where direct waves arrive weaker or later than reflected waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mangrio, H. B., Baqai, A., Umrani, F. A., & Hussain, R. (2018). Effects of modulation scheme on experimental setup of RGB LEDs. Wireless Personal Communications, 106(4), 1827–1839.

    Article  Google Scholar 

  2. Lin, C.-F., Chang, S.-H., Lee, C.-C., Wu, W.-C., Chen, W.-H., Chang, K.-H., et al. (2013). Underwater acoustic multimedia communication based on MIMO-OFDM. Wireless Personal Communications, 71(2), 1231–1245.

    Article  Google Scholar 

  3. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  4. Li, J., Wang, Y., Bastard, C. L., Wei, G., Ma, B., Sun, M., et al. (2017). Simplified high-order DOA and range estimation with linear antenna array. IEEE Communications Letters, 21(1), 76–79.

    Article  Google Scholar 

  5. Yan, W., Fang, X., & Li, J. (2014). Formation optimization for AUV localization with range-dependent measurements noise. IEEE Communications Letters, 18(9), 1579–1582.

    Article  Google Scholar 

  6. Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794–1797.

    Article  Google Scholar 

  7. Lee, B. M., & Yang, H. (2018). Massive MIMO for industrial internet of things in cyber-physical systems. IEEE Transactions on Industrial Informatics, 14(6), 2641–2652.

    Article  Google Scholar 

  8. Lee, B. M. (2018). Energy efficient selected mapping schemes based on antenna grouping for industrial massive MIMO-OFDM antenna systems. IEEE Transactions on Industrial Informatics, 14(11), 4804–4814.

    Article  Google Scholar 

  9. Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I, the essential algorithms. Robotics and Automation, 13(2), 99–108.

    Article  Google Scholar 

  10. Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II, state of the art. Robotics and Automation, 13(3), 108–117.

    Article  Google Scholar 

  11. Doukhnitch, E., Salamah, M., & Ozen, E. (2008). An efficient approach for trilateration in 3D positioning. Computer Communications, 31(17), 4124–4129.

    Article  Google Scholar 

  12. Chandrasekhar, V., Seah, W.K., Choo, Y.S., & Ee, H.V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceeding 1st ACM international workshop on underwater network (UWNet ’06) (pp 33–40).

  13. Erol-Kantarci, M., Mouftah, H. T., & Oktug, S. (2011). A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Communications Surveys & Tutorials, 13(3), 487–502.

    Article  Google Scholar 

  14. Tan, H.-P., Diamant, R., Seahc, W. K. G., & Waldmeyer, M. (2011). A survey of techniques and challenges in underwater localization. Journal Ocean Engineering, 38, 1663–1676.

    Article  Google Scholar 

  15. Ramezani, H., Jamali-Rad, H., & Leus, G. (2012). Target localization and tracking for an isogradient sound speed profile. IEEE Transactions on Signal Processing, 61(6), 1434–1446.

    Article  MathSciNet  Google Scholar 

  16. Porter, M. B. (2011). The BELLHOP manual and user’s guide : Preliminary draft. Heat Light and Sound Research Inc, LaJolla, CA, USA: Technical Report

  17. Ziomek, L. J. (1994). Sound-pressure level calculations using the RRA algorithm for depth-dependent speeds of sound valid at turning points and focal points. IEEE Journal of Oceanic Engineering, 19(2), 242–248.

    Article  Google Scholar 

  18. Porter, M. B., & Homer, H. P. (1987). Gaussian beam tracing for computing ocean acoustic fields. Journal of the Acoustical Society of America, 82(4), 1349–1359.

    Article  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (Grant No. NRF-2019R1A4A1023746) and Korea Electric Power Corporation (Grants R18XA02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Moo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.K., Cheon, J.H. & Lee, B.M. Improved Underwater Horizontal Ranging Algorithm using Reflected Acoustic Wave. Wireless Pers Commun 111, 1775–1786 (2020). https://doi.org/10.1007/s11277-019-06956-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06956-0

Keywords

Navigation