Skip to main content
Log in

Performance Analysis of Opportunistic, Reactive and Partial Relay Selection with Adaptive Transmit Power for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we derive the packet error probability of cognitive radio networks. Our analysis is valid when the powers of secondary source and relays are adaptive. The secondary source and relays can adapt their transmitting power so that interference to primary receiver is below a given threshold T. The analysis takes into account interference from primary transmitter. Different relay selection techniques are investigated such as opportunistic amplify and forward (AF) relaying, partial and reactive relay selection. In opportunistic AF relaying, the selected relay offers the highest end-to-end signal to interference plus noise ratio (SINR). Partial relay selection activates the relay with the largest SINR of first hop. Reactive relay selection activates the relay with the largest SINR of second hop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Akyildiz, I., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  3. Rini, S., & Hupper, C. (2013). On the capacity of cognitive interference channel with a common cognitive message. Transaction on Emerging Telecommunication Technologies, 1, 12–18.

    Google Scholar 

  4. Alptekin, G. I., & Bener, A. B. (2011). Spectrum trading in cognitive radio networks with strict transmission power control. Transaction on Emerging Telecommunication Technologies, 22(6), 282–295.

    Article  Google Scholar 

  5. Tan, X., Zhang, H., Chen, Q., & Hu, J. (2013). Opportunistic channel selection based on time series prediction in cognitive radio networks. Transaction on Emerging Telecommunication Technologies, 17(3), 32–38.

    Google Scholar 

  6. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  7. Menon, R., Buehrer, R., & Reed, J. (2005). Outage probabilitybased comparison of underlay and overlay spectrum sharing techniques. In IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 101–109). Baltimore.

  8. Chamkhia, H., Hasna, M. O., Hamila, R., & Hussain, S. I. (2012). Performance analysis of relay selection schemes in underlay cognitive networks with Decode and Forward relaying. IEEE PIMRC, Syndney, Australia, 9–12 Sept 2012.

  9. Manna, M. A., Chen, G., & Chambers, J. A. (2014). Outage probability analysis of cognitive relay network with four relay selection and end-to-end performance with modified quasi-orthogonal space-time coding. IET Communications, 8(2), 233–241.

    Article  Google Scholar 

  10. Hussain, S. I., Alouini, M.-S., Hasna, M., & Qaraqe, K. (2012). Partial relay selection in underlay cognitive networks with fixed gain relays (pp. 1–5). VTC Spring, Yokohama, Japan, 6–9 May 2012.

  11. Hussain, S. I., Alouini, M. S., Qarage, K., & Hasna, M. (2012). Reactive relay selection in underlay cognitive networks with fixed gain relays (pp. 1784–1788). IEE ICC, Ottawa, Canada, 10–15 June 2012.

  12. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  13. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  14. Zhong, C., Ratnarajah, T., & Wong, K.-K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2875–2879.

    Article  Google Scholar 

  15. Kang, X., Zhang, R., Liang, Y.-C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374–383.

    Article  Google Scholar 

  16. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  Google Scholar 

  17. Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3765.

    Article  Google Scholar 

  18. Tourki, K., Qaraqe, K. A., & Alouini, M.-S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  19. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46(2), 182–184. Cited by: Papers (60).

    Article  Google Scholar 

  20. Chakraborty, P., & Prakriya, S. (2017). Secrecy outage performance of a cooperative cognitive relay network. IEEE Communications Letters, 21(2), 326–329.

    Article  Google Scholar 

  21. He, J., Guo, S., Pan, G., Yang, Y., & Liu, D. (2017). Relay cooperation and outage analysis in cognitive radio networks with energy harvesting. IEEE Systems Journal, PP(99), 1–12.

    Google Scholar 

  22. Arezumand, H., Zamiri-Jafarian, H., & Soleimani-Nasab, E. (2017). Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems. IEEE/OSA Journal of Optical Communications and Networking, 9(10), 909–920.

    Article  Google Scholar 

  23. Al-Qahtani, F. S., Abd El-Malek, A. H., Ansari, I. S., Radaydeh, R. M., & Zummo, S. A. (2017). Outage analysis of mixed underlay cognitive RF MIMO and FSO relaying with interference reduction. IEEE Photonics Journal, 9(2), 1–22.

    Article  Google Scholar 

  24. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  25. Zhang, R. (2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(4), 2112–20.

    Article  Google Scholar 

  26. Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadhir Ben Halima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We can write

$$\begin{aligned}&P\left( \frac{T|g_{SD}|^{2}}{|g_{SP_{{R}}}|^{2}N_{0}}<x||g_{SP_{{R}}}|^{2}>\frac{T}{E^{\max }}\right) \nonumber \\&\quad =P\left( |g_{SD}|^{2}<\frac{x|g_{SP_{{R}}}|^{2}N_{0} }{T}||g_{SP_{{R}}}|^{2}>\frac{T}{E^{\max }}\right) \nonumber \\&\quad =e^{\frac{T}{\lambda _{SP_{{R}}}^{2}E^{\max }}}\int _{\frac{T}{E^{\max }} }^{+\infty }P\left( |g_{SD}|^{2}<\frac{xuN_{0}}{T}\right) \frac{e^{-\frac{u}{ \lambda _{SP_{{R}}}^{2}}}}{\lambda _{SP_{{R}}}^{2}}du \nonumber \\&\quad =e^{\frac{T}{\lambda _{SP_{{R}}}^{2}E^{\max }}}\int _{\frac{T}{E^{\max }} }^{+\infty }\left[ 1-e^{-\frac{xuN_{0}}{T\lambda _{SD}^{2}}}\right] \frac{e^{- \frac{u}{\lambda _{SP_{{R}}}^{2}}}}{\lambda _{SP_{{R}}}^{2}}du \nonumber \\&\quad =1-\frac{e^{-\frac{N_{0}x}{\lambda _{SD}^{2}E^{\max }}}}{1+\frac{\lambda _{SP_{{R}}}^{2}xN_{0}}{T\lambda _{SD}^{2}}} \end{aligned}.$$
(45)

Appendix B

When the adaptive power exceeds \(P_{max}\), the secondary source transmit power is equal to \(P_{max}\). The SINR between S and D is expressed as

$$\Gamma _{S,D}=\frac{E^{max}|g_{SD}|^{2}}{E_{P_{T}}|g_{P_{T}D}|^{2}+N_{0}}$$
(46)

where \(E^{max}=T_sP^{max}\), \(T_s\) is the symbol period, \(E_{P_{T}}\) is the transmitted energy per symbol of primary transmitter \(P_{T}\), \(g_{P_{T}D}\) is the channel coefficient between \(P_T\) and node D. \(E_{P_{T}}|g_{P_{T}D}|^{2}\) is the interference at node D from \(P_{T}\).

The CDF of the SINR is expressed as

$$F_{\Gamma _{SD}}(\gamma )=P(E^{max}|g_{SD}|^{2}<\gamma (E_{P_{T}}|g_{P_{T}D}|^{2}+N_{0}))$$
(47)

For Rayleigh channels, \(Z_1=E^{max}|g_{SD}|^{2}\) follows an exponential distribution with mean \(E^{max}\lambda _{SD}^{2}\) where \(\lambda _{SD}^{2}=E(|g_{SD}|^{2})\). E(X) is the expectation of X. Also, \(Z_2=E_{P_{T}}|g_{P_{T}D}|^{2}\) follows an exponential distribution with mean \(E_{P_T}\lambda _{P_{T},D}^{2}\) where \(\lambda _{P_{T},D}^{2}=E(|g_{P_{T}D}|^{2})\)

Therefore, the CDF can be expressed as

$$\begin{aligned} F_{\Gamma _{SD}}(\gamma )& = P(Z_2<\gamma (N_{0}+Z_2)) \nonumber \\ & = \int _{N_{0}}^{+\infty }F_{Z_1}(\gamma u)f_{Z_2}(u-N_{0})du \end{aligned}$$
(48)

where \(F_{Z_1}(u)=P(Z_1<u)\) is the CDF of \(Z_1\) and \(f_{Z_2}(u)\) is the PDF of \(Z_2\).

Since \(Z_1\) and \(Z_2\) follow an exponential distribution, we have

$$\begin{aligned} F_{\Gamma _{SD}}(\gamma )& = \int _{N_{0}}^{+\infty }\left[ 1-e^{-\frac{ \gamma u}{E^{max}\lambda _{SD}^{2}}}\right] e^{-\frac{(u-N_{0})}{E_{P_T}\lambda _{P_{T},D}^{2}}}\frac{1}{E_{P_T}\lambda _{P_{T}D}^{2}}du \nonumber \\ & = 1-\frac{E^{max}\lambda _{SD}^{2}}{E^{max}\lambda _{SD}^{2}+\gamma E_{P_T}\lambda _{P_{T}D}^{2}} e^{-\frac{N_{0}\gamma }{E^{max}\lambda _{SD}^{2}}} \end{aligned}$$
(49)

Appendix C

The SINR (13) can be written as

$$\Gamma _{SD}=\frac{b_{1}U_{1}}{U_{2}(b_{2}+b_{3}U_{3})}$$
(50)

where \(U_{1}=|g_{SD}|^{2},U_{2}=|g_{S \ddot{} P_{R}}|^{2},U_{3}=|g_{P_{T}D}|^{2},e_{1}=T,e_{2}=N_{0},e_{3}=E_{P_{T}}.\)

For Rayleigh channels, \(U_{1}\),\(U_{2}\) and \(U_{3}\) are exponentially distributed with mean \(\lambda _{i}=E(U_{i})\).

We have to compute

$$\begin{aligned} P\left( \Gamma _{SD}<x|\frac{T}{|g_{SP_{R}}|^{2}}<E^{\max }\right)& = P\left( \Gamma _{SD}<x|U_{2}>\frac{T}{E^{\max }}\right) \nonumber \\ & = P\left( e_{1}U_{1}<xU_{2}(e_{2}+e_{3}U_{3})|U_{2}>\frac{T}{E^{\max }} \right) \end{aligned}$$
(51)

Let \(U_{4}=e_{2}+e_{3}U_{3}\). The CDF of \(U_{4}\) is equal to

$$F_{U_{4}}(w)=F_{U_{3}}\left( \frac{w-e_{2}}{e_{3}}\right)$$
(52)

We deduce the PDF

$$f_{U_{4}}(w)=\frac{1}{e_{3}}f_{U_{3}}\left( \frac{w-e_{2}}{e_{3}}\right) .$$
(53)

Equation (51) can be expressed as

$$\begin{aligned}&P\left( e_{1}U_{1}<xU_{2}(e_{2}+e_{3}U_{3})|U_{2}>\frac{T}{E^{\max }}\right) \nonumber \\&\quad =\int _{\frac{T}{E^{\max }}}^{+\infty }\int _{e_{2}}^{+\infty }P(e_{1}U_{1}<xvw)f_{U_{2}|U_{2}>\frac{T}{E^{\max }}}(v)f_{U_{4}}(w)dvdw\nonumber \\&\quad =\int _{e_{2}}^{+\infty }\int _{\frac{T}{E^{\max }}}^{+\infty }e^{\frac{T}{ E_{\max }\lambda _{2}}}\left[ 1-e^{-\frac{xvw}{e_{1}\lambda _{1}}}\right] \frac{e^{-\frac{v}{\lambda _{2}}}}{\lambda _{2}}dv\frac{e^{-\frac{(w-e_{2})}{ e_{3}\lambda _{3}}}}{e_{3}\lambda _{3}}dw \end{aligned}$$
(54)

We have

$$\int _{\frac{T}{E^{\max }}}^{+\infty }e^{\frac{T}{E_{\max }\lambda _{2}}} \left[ 1-e^{-\frac{xvw}{e_{1}\lambda _{1}}}\right] \frac{e^{-\frac{v}{ \lambda _{2}}}}{\lambda _{2}}dv=1-\frac{e^{-\frac{Txw}{E^{\max }e_{1\lambda _{1}}}}}{1+\frac{\lambda _{2}xw}{\lambda _{1}e_{1}}}$$
(55)

Using (54) and (55), we deduce

$$\begin{aligned} P\left( \Gamma _{SD}<x|\frac{T}{|g_{SP_{R}}|^{2}}<E^{\max }\right)& = \int _{e_{2}}^{+\infty }\left[ 1-\frac{e^{-\frac{Txw}{E^{\max }e_{1\lambda _{1}}}}}{1+\frac{\lambda _{2}xw}{\lambda _{1}e_{1}}}\right] \frac{e^{-\frac{ (w-e_{2})}{e_{3}\lambda _{3}}}}{e_{3}\lambda _{3}}dw\nonumber \\& = 1-\frac{e^{\frac{e_{2}}{e_{3}\lambda _{3}}}}{e_{3}\lambda _{3}} \int _{e_{2}}^{+\infty }\frac{e^{-w\left( \frac{1}{e_{3}\lambda _{3}}+\frac{xT }{E^{\max }e_{1}\lambda _{1}}\right) }}{1+\frac{\lambda _{2}xw}{\lambda _{1}e_{1}}}dw \end{aligned}$$
(56)

Let

$$z=1+\frac{\lambda _{2}xw}{\lambda _{1}e_{1}}$$
(57)

We deduce

$$\begin{aligned}&P\left( \Gamma _{SD}<x|\frac{T}{|g_{SP_{R}}|^{2}}<E^{\max }\right) \nonumber \\&\quad =1-\frac{ e^{\frac{e_{2}}{e_{3}\lambda _{3}}}}{e_{3}\lambda _{3}}\frac{\lambda _{1}e_{1}}{\lambda _{2}x}\times \int _{1+\frac{\lambda _{2}xe_{2}}{\lambda _{1}e_{1}} }^{+\infty }\frac{e^{-\left( z-1\right) \frac{\lambda _{1}e_{1}}{\lambda _{2}x}\left( \frac{1}{e_{3}\lambda _{3}}+\frac{xT}{E^{\max }e_{1}\lambda _{1} }\right) }}{z}dz\nonumber \\&\quad =1-\frac{e^{\frac{e_{2}}{e_{3}\lambda _{3}}}}{e_{3}\lambda _{3}}\frac{ \lambda _{1}e_{1}}{\lambda _{2}x}e^{\frac{\lambda _{1}e_{1}}{e_{3}\lambda _{3}\lambda _{2}x}+\frac{T}{E^{\max }\lambda _{2}}}\times E_{i}(\left( \frac{ \lambda _{1}e_{1}}{\lambda _{2}x}+e_{2}\right) \left( \frac{1}{e_{3}\lambda _{3}}+\frac{xT}{E^{\max }e_{1}\lambda _{1}}\right) ) \end{aligned}$$
(58)

where \(E_{i}(x)\) is the exponential integral function defined as

$$E_{i}(x)=\int _{x}^{+\infty }\frac{e^{-t}}{t}dt.$$
(59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halima, N.B., Boujemâa, H. Performance Analysis of Opportunistic, Reactive and Partial Relay Selection with Adaptive Transmit Power for Cognitive Radio Networks. Wireless Pers Commun 112, 305–324 (2020). https://doi.org/10.1007/s11277-020-07027-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07027-5

Keywords

Navigation