Skip to main content
Log in

Spallation Analysis of Concrete Under Pulse Load Based on Peridynamic Theory

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Spallation analysis is one of important research directions in impact dynamics. By combining the newly developing Peridynamics (PD) theory, the spallation phenomenon of concrete is numerically simulated using C language and MATLAB programming. The factors that may affect the spalling are verified: the type of pulse load, the geometric size of the model and the action time of pulse load. The dynamic response of spallation of three-dimensional concrete columns under different pulse loading forms (rectangular pulse, triangular pulse and exponential pulse) is analyzed. (1) Under the same impulse effect, only one spalling occurs in the rectangular pulse, and no multiple spallation occurs when the pulse amplitude increase. Exponential and triangular pulses can produce multiple spallation phenomena, and the time for the first spallation phenomenon is rectangular pulse < triangle pulse < exponential pulse. (2) The effect of the same linear triangle pulse on spalling of concrete columns with different lengths (100 mm, 200 mm and 300 mm) is analyzed. The triangle pulse can cause single or multiple spallation, which is related to the length and size of the model. (3) Finally, by changing the number of time steps of the pulse load, the different spalling phenomena of triangular pulses are analyzed. The thickness of the first layer increases significantly with the increase of the action time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hopkinson, B. (1914). A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,213, 497–508.

    Google Scholar 

  2. Rinehart, J. S. (1951). Some quantitative data bearing on the scabbing of metal under explosive attack. Journal of Applied Physics,22(5), 555–560.

    Article  Google Scholar 

  3. Klepaczho, J. R., & Brara, A. (2001). An experiment method for dynamic tensile of concrete by spalling. International Journal of Impact Engineering,25(4), 387–409.

    Article  Google Scholar 

  4. Gálvez Díaz-Rubio, F., Rodríguez Pérez, J., & Sánchez Gálvez, V. (2002). The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics. International Journal of Impact Engineering,27(2), 161–177.

    Article  Google Scholar 

  5. Zhang, L., Hu, S. S., Chen, D. X., Zhang, S. B., Yu, Z. Q., & Liu, F. (2009). Spall fracture properties of steel-fiber-reinforced concrete. Explosion and Shock Waves,29(2), 119–124.

    Google Scholar 

  6. Abu Arqub, O., Odibat, Z., & Al-Smadi, M. (2018). Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dynamics,94, 1819–1834.

    Article  Google Scholar 

  7. Abu Arqub, O., & Al-Smadi, M. (2018). Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numerical Methods for Partial Differential Equations,34(5), 1577–1597.

    Article  MathSciNet  Google Scholar 

  8. Abu Arqub, O., & Al-Smadi, M. (2018). Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numerical Methods for Partial Differential Equations,34(5), 1759–1780.

    Article  MathSciNet  Google Scholar 

  9. Abu Arqub, O., & Banan, M. (2018). Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos, Solitons & Fractals,117, 117–124.

    Article  MathSciNet  Google Scholar 

  10. Abu Arqub, O., & Al-Smadi, M. (2018). Atangana-Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space. Chaos, Solitons & Fractals,117, 161–167.

    Article  MathSciNet  Google Scholar 

  11. Al-Smadi, M., & Abu Arqub, O. (2019). Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Applied Mathematics and Computation,342, 280–294.

    Article  MathSciNet  Google Scholar 

  12. Li, J., & Hao, H. (2014). Numerical study of concrete spall damage to blast loads. International Journal of Impact Engineering,68, 41–55.

    Article  Google Scholar 

  13. Ekström, J., Rempling, R., & Plos, M. (2016). Spalling in concrete subjected to shock wave blast. Engineering Structures,122, 72–82.

    Article  Google Scholar 

  14. Zuo, Y. J., Zhu, W. C., Tang, C. A., Li, X. B., & Wang, W. H. (2006). Numerical simulation on spallation process of inhomogeneous medium induced by reflection of stress wave. Journal of Central South University (Science and Technology),37(6), 1177–1182.

    Google Scholar 

  15. Silling, S. A. (2000). Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids,48(1), 175–209.

    Article  MathSciNet  Google Scholar 

  16. Silling, S. A., Parks, M. L., Kamm, J. R., Weckner, O., & Rassaian, M. (2017). Modeling shockwaves and impact phenomena with Eulerian peridynamics. International Journal of Impact Engineering,107, 47–57.

    Article  Google Scholar 

  17. Xu, J. F., Askari, A., Weckner, O., & Silling, S. (2008). Peridynamic analysis of impact damage in composite laminates. Journal of Aerospace Engineering,21(3), 187–194.

    Article  Google Scholar 

  18. Hu, W. K., Wang, Y. N., Yu, J., Yen, C. F., & Bobaru, F. (2013). Impact damage on a thin glass plate with a thin polycarbonate backing. International Journal of Impact Engineering,62, 152–165.

    Article  Google Scholar 

  19. Hao, Y., Hao, H., & Li, Z. X. (2013). Influence of end friction confinement on impact tests of concrete material at high strain rate. International Journal of Impact Engineering,60, 82–106.

    Article  Google Scholar 

  20. Lok, T. S., & Zhao, P. J. (2004). Impact response of steel fiber-reinforced concrete using a split Hopkinson pressure bar. Journal of Materials in Civil Engineering,16(1), 54–59.

    Article  Google Scholar 

  21. Hassan, M., & Wille, K. (2017). Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique. Construction and Building Materials,144, 747–757.

    Article  Google Scholar 

  22. Gu, X., Zhang, Q., Huang, D., & Yv, Y. T. (2016). Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics,160, 124–137.

    Article  Google Scholar 

  23. Ai, D. H., Zhao, Y. C., Wang, Q. F., & Li, C. W. (2019). Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test. International Journal of Impact Engineering,126, 135–146.

    Article  Google Scholar 

  24. Silling, S. A., & Askari, E. (2005). A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures,83(17–18), 1526–1535.

    Article  Google Scholar 

  25. Yu, K., Xin, X. J., & Lease, K. B. (2011). A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering,19(4), 045003.

    Article  Google Scholar 

  26. Wang, L. L. (1985). Stress wave foundation. Beijing: National Defense Industry Press.

    Google Scholar 

  27. Zhan, X. J., & Shu, D. Q. (2003). Spalling phenomena analysis of brittle materials under three kinds of impulse loads. Journal of Wuhan University of Hydraulic and Electric Engineering,36(2), 45–48.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Sicence and Technology Project of Guizhou Province (No.LH[2014]7624) and International Cooperation Project of Guizhou Province (No.G[2013]7006) and Doctoral Foundation of Guizhou University (No.[2018] 20) and Sicence and Technology Project of Guizhou Province (黔科合支撑 [2019] 2886) and Guizhou international science and technology cooperation base project: Guizhou optoelectronic information and intelligent application International Joint Research Center (qiankehe platform talents [2019] 5802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Qian, S. Spallation Analysis of Concrete Under Pulse Load Based on Peridynamic Theory. Wireless Pers Commun 112, 949–966 (2020). https://doi.org/10.1007/s11277-020-07085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07085-9

Keywords

Navigation