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Abstract

In this paper, we are concerned with trust modeling for agents in networked

computing systems. As trust is a subjective notion that is invisible, implicit

and uncertain in nature, many attempts have been made to model trust with

aid of Bayesian probability theory, while the field lacks a global comprehensive

analysis for variants of Bayesian trust models. We present a study to fill in

this gap by giving a comprehensive review of the literature. A generic Bayesian

trust (GBT) modeling perspective is highlighted here. It is shown that all

models under survey can cast into a GBT based computing paradigm as special

cases. We discuss both capabilities and limitations of the GBT perspective and

point out open questions to answer, with a hope to advance GBT to become a

pragmatic infrastructure for analyzing intrinsic relationships among variants of

trust models and developing novel tools for trust evaluation.

Keywords: Bayesian, networked computing systems, trust evaluation, trust

modeling

1. Introduction

In the past decade, we have witnessed the advent of a variety of networked

computing systems. Examples include wireless sensor networks (WSNs), inter-

net of things (IoT), electronic commerce (EC), P2P networks, cloud computing,

mobile ad hoc networks (MANETs), cognitive radio networks (CRNs), multi-

agent systems, semantic web, social networks, web-based recommender systems.
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A basic feature of such systems is the exploitation of the collective power of the

network nodes to accomplish novel tasks.

In tandem with advances in network technologies, this has spurred a lot of

renewed interest in trust modeling and evaluation. Generally speaking, trust is

a concept with regard to the expectation, belief, and confidence on the integrity,

reliability, security, dependability, ability, and other characters of an entity. It

is a key factor that influences collaboration, competition, interaction and infor-

mation sharing among network peers, and an enabling technology for decision

making that facilitates the achievement of a system or application goal. We

will use the words agents, entities, nodes, principals or peers interchangeably

through the rest of this paper, as we will do with interactions, relationships,

and links.

Trust has been studied for a long time [1]. The starting point of these

studies may originate from the social sciences, for which trust between humans

and its effects in economic transactions are the focus [2, 3, 4]. The notion

of trust is intuitively easy to comprehend, while it has not yet been formally

defined. Various definitions of trust have been proposed in different computing

fields. Most of them depend on the context in which trust is investigated or the

viewpoint adopted. Here are some examples as follows.

“Trust is the subjective probability by which an individual, A, ex-

pects that another individual, B, performs a given action on which

its welfare depends. ” [5]

“Trust is the extent to which one party is willing to depend on

something or somebody in a given situation with a feeling of relative

security, even though negative consequences are possible.” [1]

Trust is “a belief that is influenced by the individual’s opinion about

certain critical system features.” [6]

“Trust (or, symmetrically, distrust) is a particular level of the sub-

jective probability with which an agent assesses that another agent
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or group of agents will perform a particular action, both before he

can monitor such action (or independently of his capacity ever to

be able to monitor it) and in a context in which it affects his own

action.” [5]

“Trust is a psychological state comprising the intention to accept

vulnerability based upon positive expectations of the intentions or

behavior of another.” [7]

“Trust is the willingness of the trustor (evaluator) to take risk based

on a subjective belief that a trustee (evaluatee) will exhibit reliable

behavior to maximize the trustor’s interest under uncertainty (e.g.,

ambiguity due to conflicting evidence and/or ignorance caused by

complete lack of evidence) of a given situation based on the cognitive

assessment of past experience with the trustee.” [8]

“Trust is a phenomenon that humans use every day to promote in-

teraction and accept risk in situations where only partial information

is available, allowing one person to assume that another will behave

as expected.” [9]

In addition to existing scattered definitions of trust, models for expressing

trust involved in networked systems also lack coherence and consistency. Ex-

amples of the main formal techniques for modeling trust include fuzzy logic

[10, 11, 12, 13, 14, 15, 16, 17, 18], subjective logic [19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29], Dempster-Shafer theory [30, 31, 32, 33, 34, 35], ratings

[36, 37, 38, 39, 40], weighting [41, 42, 43, 44, 45], neural network [46, 47],

Bayesian networks [48, 49, 50, 51], game theory [52, 53], swarm intelligence

[54, 55, 56, 57], credential and policy [58, 59, 60, 61, 62, 63, 64, 65, 66], and

others [67, 68, 69, 70, 71, 72, 42, 73, 74, 75].

Despite the discrepancy in definitions of and modeling tools for trust, it is

well recognized that trust is important for promoting quick responses to a crisis,

reducing transaction costs, avoiding harmful conflict, and enabling cooperative
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behavior. Trust can be regarded as a measure of a peer’s faithfulness. It can

also be treated as a prediction of the future behaviors of the peer who provide

service. The trust value is thus a probability that a peer behaves satisfactorily

in future interactions. When multiple aspects of the peer’s interaction with

other peers are considered, a trust vector, instead of a single value, can be used.

Each element of this vector is used for evaluating one aspect. Most of the ex-

isting work on trust is highly specific to application considered. The theoretical

underpinning of trust modeling and evaluation is important for creating a more

cumulative body of knowledge on trust, while it remains a hard nut to crack.

In this paper, we focus on a Bayesian perspective for trust modeling for

agents in networked computing systems. In spite of a few attempts to model

trust using Bayesian techniques [76, 77, 78, 79, 80, 81, 82, 83, 84, 85], the field

lacks a global overview for variants of Bayesian trust models and a discussion

on their connections between each other. We present a study to fill in this gap.

This paper does not pretend to be an exhaustive bibliography survey, but rather

will review a gallery of selective research. A comprehensive bibliography can be

found in other survey papers such as [86, 87, 88, 89, 8, 90, 91, 92, 93, 94, 95,

96, 97, 98].

The major contributions of of this paper are summarized as follows.

1. We provide a high-level generic Bayesian perspective, termed generic Bayesian

trust (GBT) here, for trust modeling and evaluation;

2. We give a literature review of classic variants of Bayesian trust models

and some alternatives which can cast into the GBT paradigm;

3. We identify the strengths and weaknesses of the GBT paradigm;

4. We make an attempt to provide an improved understanding of Bayesian

philosophy as well as its capabilities and limitations in modeling trust.

1.1. Organization of this paper

The remainder of this paper is organized as follows. Section 2 presents

the GBT perspective and basic mathematical tools required to implement it.

Section 3 provides a literature review of trust models that leverage the Beta
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distribution and Dirichlet distribution as the cornerstone. The relationship

between these models and the GBT perspective is also discussed. Section 4

reviews state-space based trust models and discusses their connections to the

GBT perspective. Section 5 presents a literature review on the subjective logic

based trust models, and discusses their relationships to the GBT perspective.

Section 6 provides an overall comparison of all models under survey. Section

7 discusses the capabilities and limitations of the GBT perspective in trust

modeling and points out a number of open research questions. Finally, Section

8 concludes the paper.

2. The GBT Perspective for Trust Modeling and Evaluation

The GBT perspective is based on a collection of ideas. Assume that a trustor

principal is interested in but uncertain about the trust (or distrust) of a trustee

principal in a specific context. The trustor can quantify its uncertainty as a

probability for the quantity it is interested in, and as a conditional probability

for observations it might make, given the quantity it is interested in. When data

arrives, Bayes theorem tells the trustor how to move from its prior probability

to a new conditional probability for the quantity of interest, also known as the

posterior probability in the jargon of Bayesian statistics. In this view, trust (or

distrust) is quantitatively measured with a probability value ranging from 0 to

1.

The major insight leveraged in the GBT perspective is that, in spite of

the complexity regarding the concept of trust, it has two natural and intrinsic

attributes, namely uncertainty and subjectivity. The GBT perspective takes

into account of such attributes as fully as possible to grasp the essence of trust,

rendering it compatible with and applicable across different application domains.

To begin with, let us consider an open-ended network, which consists of

network agents and links among the agents. At any point in time, there may

be new agents joining the network and/or some others leaving. Each agent is

associated with a unique identity (ID) and may interact with some others at
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some point in time. When a pair of agents interact with each other, we say

that there is a link between them. Such interactions may take place between

different pairs of network agents over time. During an interaction between a

pair of agents, one agent plays the role of the trustor, and the other is called

trustee. We can regard the trustee as the agent obliged to provide a service,

and trustor as that receiving this service. The notion of trust is interpreted

as the trustor’s expectation of a certain future behavior of the trustee based

on first-hand experience in interacting with it in the past and other possiblely

relevant information provided by third-party agents.

We use the random variable Θ to denote the probabilistic trust of the trustee

from the point of view of the trustor and use Y to represent data the trustor

observes. Realizations of Θ and Y are respectively denoted by θ and y. We

consider data items sequentially and represent the data item arriving at the kth

time step by yk. As usual, the symbol t is used as the continuously valued time

variable. The value of t at the kth time step step is tk.

Taking a Bayesian perspective, we translate the trust inference problem to

recursively calculate the degree of belief in θk taking different values based

on data observed up to time step k, namely y1:k , {y1, . . . , yk}. Specifically,

we need to derive the probability density function (pdf) of θk conditional on

observations y1:k. This pdf is termed the posterior and represented as p(θk|y1:k)

or pk|k in short. Denote the initial pdf, also known as the prior, of the trust

variable by p(θ0|y0) ≡ p(θ0), where y0 denotes the set of no measurements.

Then, the posterior can be obtained by recursively running two stages, namely,

prediction and update.

Suppose that the posterior at time step k−1, namely p(θk−1|y1:k−1), is avail-

able. The prediction stage runs based on the Chapman-Kolmogorov equation,

yielding the prior pdf of the θ associated with time step k, as follows

p(θk|y1:k−1) =

∫

p(θk|θk−1)p(θk−1|y1:k−1)dθk−1. (1)
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In the above equation, p(θk|θk−1) is determined by a transition function

θk = fk(θk−1, vk−1) (2)

where the function fk characterizes the time-evolution law of θ from time tk−1

to tk, v is an independent and identically distributed (i.i.d.) noise sequence used

for modeling the uncertainty underlying the evolution law.

Upon the arrival of the new observation yk, the update stage is invoked to

update the prior pdf via Bayes’ rule as follows

pk|k =
p(yk|θk)p(θk|y1:k−1)

p(yk|y1:k−1)
(3)

where the denominator is termed normalizing constant defined as

p(yk|y1:k−1) =

∫

p(yk|θk)p(θk|y1:k−1)dθk, (4)

The likelihood function p(yk|θk) here quantifies the trustor’s uncertainty on the

observation yk, given the trust value θk. It is worth to note that the task here is

to compute the expected value of the unknown θk, for which we need to derive

the posterior pk|k, but it is not necessary to compute the likelihood for any

particular value of θk. Based on Bayesian principle, pk|k can be computed from

pk−1|k−1 recursively as follows

pk|k =
p(yk|θk)

∫

p(θk|θk−1)pk−1|k−1dθk−1

p(yk|y0:k−1)
. (5)

Except for a few special cases, there is no analytic closed-form solution to

(5). Here we introduce an approximate method, namely particle filter (PF)

[99], to solve (5). The PF plays the role of the major computational engine for

implementing the GBT paradigm. The PF algorithm has been widely used for

tracking dynamic target distributions [100, 99, 101, 102, 103, 104, 105]. Suppose

that we have a set of weighted samples {θi0:k−1, ω
i
k−1}

N
i=1 at time step k−1, which

can be used to construct a discrete approximation of pk−1|k−1. The samples are
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drawn from a proposal density, namely θi0:k−1 ∼ q(θ0:k−1|y1:k−1), and the sample

weights satisfies ωi
k−1 ∝ p(θ0:k−1|y1:k−1)/q(θ0:k−1|y1:k−1),

∑N
i=1 ω

i
k−1 = 1. The

proposal density q(θ0:k−1|y1:k−1) is chosen to factorize such that

q(θ0:k|y1:k) = q(θk|θ0:k−1, yk)q(θ0:k−1|y1:k−1). (6)

Each sample corresponds to a trajectory of the trust values up to time step

k− 1. At time k, each trajectory, say the ith one, extends by sampling θik from

a proposal distribution q(θk|θ
i
k−1, yk) and then being weighted by

ωi
k ∝ ωi

k−1p(θ
i
k|θ

i
k−1)p(yk|θ

i
k)/q(θ

i
k|θ

i
k−1, yk). (7)

The posterior density pk|k can then be approximated by the updated sample set

as follows

pk|k ≈

N
∑

i=1

ωi
kδθi

k
, (8)

where δθ denotes the Dirac-delta function located at θ.

Starting from {θik−1, ω
i
k−1}

N
i=1, we summarize an iteration of the algorithm

as follows:

• Sampling step. Sample θ̂ik ∼ q(θk|θ
i
k−1, yk), ∀i;

• Weighting step. Set ωi
k using (7), ∀i; Normalize them to guarantee that

∑N

i=1 ω
i
k = 1;

• Resampling step. Sample θik ∼
∑N

j=1 ω
j
kδθ̂j

k

, set ωi
k = 1/N , ∀i.

As presented above, using the GBT perspective we translate trust evaluation to

be a Bayesian sequential inference problem. See Algorithm 1 for a pseudo-code

to implement trust inference based on the GBT perspective. We will show in

Sections 3-6 that several most classic trust models cast into the GBT perspective

if we appropriately define the prior and the likelihood function.
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Algorithm 1: A pseudo-code to implement trust inference based on the
GBT perspective

1: Initialize the prior density function.
2: for k=1,2,. . . do
3: Compute the predictive distribution of the trust variable using Eqn.(1);
4: Calculate the posterior given by Eqn.(3) if an analytical solution to it

exists; otherwise, run the PF algorithm to get a particle approximation
of the posterior.

5: Set the prior density of the next iteration to be the (approximate)
posterior at the above step.

6: end for

3. Beta distribution and Dirichlet distribution based trust models

This section presents a review of trust models that leverage Beta distribution

and Dirichlet distribution models as major cornerstones. The relationships be-

tween these models and the GBT perspective presented in Section 2 is discussed

in Section 3.3.

3.1. Beta distribution based trust model (BDTM)

As its name indicates, the basic idea of BDTM is using a parametric Beta

model to represent the distribution of the probabilistic trust Θ [106, 107, 108,

109, 110]. The basic assumption leveraged by BDTM is that the outcome of each

interaction is binary, e.g., {success (good), failure (bad)}. The trust variable Θ

is interpreted as the probability that the outcome of an forthcoming interaction

between the trustee and the trustor will be success (good). Therefore, a sequence

of n interactions X = X1, . . . , Xn is represented as a sequence of binomial

(Bernoulli) trials and then modeled by a binomial distribution

p(X consists ofm successes) = θm(1− θ)n−m. (9)

We can see that if the prior of Θ is represented by a Beta distribution B(α, β) ∝

θα−1(1−θ)β−1, then the posterior p(Θ|X) will be p(Θ|X) is B(α+m,β+n−m),

where m denotes the number of successes in X, α and β are parameters of the
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Algorithm 2: A pseudo-code to implement trust inference based on the
BDTM

1: Initialize the prior density function with a Beta distribution B(α, β).
2: for k=1,2,. . . do
3: Analyze the new observation data yk, which consists of a sequence of n

interactions X = X1, . . . , Xn. Count the number m of successes in X;
4: Update the posterior B(α, β) by setting α← α+m,β ← β + n−m.
5: end for

prior. See Algorithm 2 for a pseudo-code to implement trust inference based on

the BDTM.

In real applications of BDTM, a disturbing issue may exist due to the so-

called whitewashing problem, namely, the trustor has little or no previous expe-

rience in interacting with the trustee. A pragmatic solution to such problem is to

allow the trustor to ‘consult’ about the trustee’s behavior from third-party peers

[111, 78], and then integrate its direct experience with information reported by

third-party peers when assessing trust in the trustee.

A robust multiagent system is demanded to be able to deal with selfish,

antisocial, or unreliable agents. A model presented in [111] characterizes the

relationship between individual peer behaviors and group behaviors of peers

through a two-layered hierarchy. Liu and Yang take into account of the possi-

bility of that the third-party peers may be unreliable and thus reports provided

by them may be inaccurate [78]. A notion, termed Advisor-to-Trustor Relevance

(ATTR) metric, is proposed in [78] to quantitatively measure the systematic cor-

relation of the subjectivity of the trustor and that of the third-party peer (i.e.,

the so-called advisor in [78]), based on the assumption that there is a common

set of trustees, with which both the trustor and the advisor have interacted in

the past. A report given by an advisor is weighted by its corresponding ATTR

measure and then is used to update the posterior of Θ on the basis of BDTM

[78].

To get rid of performance deterioration due to the presence of unfair rating

provided by the advisors, specific data processing mechanisms are designed to

filter unfair ratings that may result in misleading trust evaluations when us-
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ing BDTM [112]. One major mechanism is to consider recent ratings more by

‘forgetting’ old ratings as in the Bayesian reputation system (BRS) [19]. The

basic assumption leveraged by BRS is that opinions provided by the major-

ity of reputation sources are accurate, so any opinions deviating significantly

from the average will be ignored. In contrast with BRS, the TRAVOS (Trust

and Reputation model for Agent based Virtual OrganisationS) [107, 108] copes

with unfair ratings by learning to distinguish reliable from unreliable third-party

peers through repeated interactions with individual peers. However, TRAVOS

relies on the assumption that the trustor and the third-party peers have exten-

sive historical interactions that enable each third-party peer’s expected honesty

to be assessed. In addition, there is no time discounting for reports provided

by third-party peers in TRAVOS. In contrast with TRAVOS, the Personalized

Trust Model (PTM) [113] includes a forgetting factor to discount less recent

ratings given by third-party peers.

3.2. Dirichlet distribution based trust model (DDTM)

The DDTM generalizes BDTMs with only ‘binary’ outcomes to multiple

typed outcomes [114, 107, 115, 116, 117]. Such outcomes can be interpreted

as different degrees of success on the ‘success’-‘failure’ scale. In this case, Θ

is in the form of a vector consisting of, say b elements, viz. Θ ≡ [Θ1, . . . ,Θb],

with Θi representing the probability that the ith type outcome in the b-way

choice will happen in the next interaction. Correspondingly, the multinomial

distribution is used to model a n-sequence of trials X with b distinct outcomes.

As a conjugate prior to multinomial trials, the Dirichlet distribution,

D(α1, . . . , αb) ∝ θα1−1
1 . . . θαb−1

b , (10)

is leveraged in DDTM, and then the posterior p(Θ|X) is also a Dirichlet distri-

bution as follows

D(α1 + ♯1(X), . . . , αb + ♯b(X)), (11)
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Algorithm 3: A pseudo-code to implement trust inference based on the
DDTM

1: Initialize the prior density function with a Dirichlet distribution
D(α1, . . . , αb).

2: for k=1,2,. . . do
3: Given a new observation yk, which is a n-sequence of trials X with b

distinct outcomes, count the occurrences of each outcome type in the
sequence X;

4: Update the posterior D(α1, . . . , αb) by setting αi ← αi + ♯i(X) for
i = 1, . . . , b.

5: end for

where ♯i(X) counts the occurrences of the ith type outcome in the sequence X.

See Algorithm 3 for a pseudo-code to implement trust inference based on the

DDTM. The DDTM has been widely used in the context of global ubiquitous

computing [116], especially E-Marketplaces [118].

3.3. On relationships between BDTM, DDTM and the GBT perspective

In this section, we clarify relationships between BDTM, DDTM and the

GBT perspective.

If we define the state transition function (2) in GBT as follows

θk = θk−1, (12)

it leads to p(θk|θk−1) = δθk−1
, and then p(θk|y1:k−1) = p(θk−1|y1:k−1). That is

to say that the prior pdf at time step k is equivalent to the posterior at time step

k−1. Now further restrict the initial pdf of θ, p(θ0|y0), to be a Beta distribution,

and then define the likelihood function p(yk|θk) in (5) to be binomial as follows

p(yk|θk) = θmk (1− θk)
n−m, (13)

where n denotes the number of binary data items included in yk and m the num-

ber of successes in yk. Here yk is assumed to include multiple data items. Note

that the GBT perspective allows any number of interactions to be performed

between a pair of peers during a time interval. The resulting posterior (5) is
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then restricted to be a Beta distribution, due to the fact that the class of Beta

prior distributions is conjugate to the class of binomial likelihood functions.

Now the GBT framework reduces to the BDTM.

To summarize, the BDTM can be regarded as a special implementation case

of the GBT framework, with specific definitions of the initial pdf p(θ0) (i.e., in

the form of Beta distribution), state transition function (as shown in (12)) and

the likelihood (as shown in (13)).

Analogously, if we model the initial pdf p(θ0) to be a Dirichlet distribution,

specify the transition function in the same way as in (12) and represent the

likelihood function to be multinomial, then the GBT framework reduces to the

DDTM presented in Subsection 3.2. Therefore, the DDTM can also be regarded

as an ad hoc implementation of the GBT framework.

In case of the trustee’s past behavior data given by a third-party peer being

available, the GBT framework allows the behavior data itself as well as the

information on the third-party peer to be treated as a new observation that is

then used to update the posterior pdf of Θ. To handle such an observation using

GBT, only an appropriate likelihood function is required to be set. Suppose that

the Beta distribution model is under use and the trustee’s past behavior data

X reported by this third-party peer is an n-sequence of m successes, then the

likelihood function can be defined to be θθtppm, θθtpp(n−m), where θtpp denotes

the trust value of this third-party peer from the point of view of the trustor. θtpp

may be calculated based on past interactions between this third-party peer and

the trustor. Then the resulting posterior of Θ, after seeing this new observation,

becomes B(α+θtppm,β+θtpp(n−m)), assuming that the prior of Θ is B(α, β).

If a series of new observations from multiple third-party peers are available, then

the observations can be processed one by one, in the same way as illustrated

above, and, correspondingly, the posterior pdf will be updated in a sequential

manner.

Note that, for all cases discussed above, there is no need to apply the PF

sampling approach to calculate the posterior pdf as shown in (5), because ana-

lytical solutions to (5) are available due to the adopted conjugate prior to the
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likelihood function.

4. State-Space based trust model (SSTM)

In contrast with the BDTM and DDTM that completely neglect the time-

evolution feature of trust, the SSTM characterizes the time-evolution law of

trust directly as follows [80, 77, 119]

θk ∼ TN (αθk−1, Q), (14)

where TN (m,Q) denotes a truncated normal pdf with mean m, variance Q

and support area [0, 1], 0 ≤ α ≤ 1 a forgetting factor specified by the model

designer. An empirically setting of α is 0.85 given in [77]. In SSTM, the data y

is a continuously valued vector represented as yk , [yk,0, yk,1, . . . , yk,nk
], where

nk denotes the number of neighbor (or similar) peers of the trustee at time

step k. The first element yk,0 denotes the interaction outcome observed by the

trustor when interacting with the trustee. The element yk,i, 0 < i 6 nk, denotes

the outcome observed by the trustor when interacting with the ith neighbor

peer of the trustee. Then the relationship between θk and yk is formulated via

a likelihood function

p(yk|θk) = exp

(

− | θk − V |

β

)

(15)

where 0 < β < 1 controls the degree of the sensitivity of the likelihood value

with respect to V . The term V denotes the averaged voting value over all

neighbor peers, namely,

V ,

∑nk

i=1 U(i, yk)

nk

, (16)

in which

U(i, yk) =







1, if |yk,i − yk,0| < r

0, otherwise
(17)

where r denotes the maximum allowable difference between yk,0 and yk,i, i > 0

under the assumption that the trustee behaves in a trustworthy way.
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Algorithm 4: A pseudo-code to implement the IPF

1: Initialize θk,j = 1, j = 0, 1, . . . , nk.
2: for j = 0, 1, . . . , nk do
3: Treat the jth peer as the trustee and the others as the trustee’s

neighbor peers;
4: Given θk,i, i = 0, . . . , j − 1, j + 1, . . . , nk, approximate the posterior pdf

of θk,j by a weighted sample set obtained using one iteration of PF.
5: Update θk,j based on the weighted sample set.
6: end for
7: If the stop criterion is satisfied, output θk,j , j = 0, 1, . . . , nk; otherwise,

return to step 2.

If U(i, yk) = 1, it can be interpreted as the ith neighbor peer casting a

vote of that the trustee is trusted. In the context of WSNs, the definition of

U(i, yk) reflects a smooth variation in sensor readings of close-by reliable sensors

[80, 77, 119]. A basic assumption leveraged here is that every neighbor peer of

the trustee is totally trusted by the trustor. This assumption is relaxed in

[80], in which an iterative PF method is presented that takes account of the

trustworthiness of every neighbor peer in the calculation of V . Specifically, in

that case, V is defined to be

V ,

∑nk

i=1 θk,iU(i, yk)
∑nk

i=1 θk,i
. (18)

In a slight abuse of notation, here we use θk,i to denote the trust in the ith

neighbor peer of the trustee, and use θk,0 to denote the trust in the trustee;

both are in the point of view of the trustor. It is worthy to note that every

θk,i, i > 0 may be itself unknown. So an algorithm is required to estimate

θk , [θk,0, θk,1, · · · , θk,nk
]. An iterative PF (IPF) approach is proposed in [80]

to estimate θk,j , j = 0, 1, . . . , nk one by one. The idea is to regard the nk + 1

network peers as members of a virtual committee. When estimating trust of a

member in this committee, then this member is regarded as the trustee and the

other members are regarded as neighbor peers of the trustee. A pseudo-code to

implement IPF is presented in Algorithm 4.
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4.1. On relationship between SSTM and the GBT perspective

The relationship between SSTM and the GBT perspective is easy to check.

If we set the state transition function (2) to be (14), and define the likelihood

function p(yk|θk) as (15), then the GBT based model reduces to the SSTM.

In comparison with BDTM and DDTM, SSTM is featured by its natural

capability in characterizing the time-varying property of Θ. This feature renders

SSTM to be a better choice for characterizing dynamically changing sensing

environments in many WSN applications such as robust sensor data fusion [77]

and fault-tolerant event detection [119].

5. Subjective logic based trust model (SLTM)

Subjective logic operates on subjective beliefs about an event or subject

of interest [120], wherein a belief is represented by the notion of opinion. In

contrast with classical probability calculus that uses standard first-order prob-

ability representation, subjective logic employs second-order probabilities that

is equivalent to a pdf over a first-order probability variable.

Assume that the trustor has an opinion on its trust in the trustee. Such an

opinion is translated into degrees of belief or disbelief about the trustworthiness

of the trustee in SLTM. The major feature of SLTM is that it quantitatively

measures degrees of ignorance in a direct way. Borrowing the same notation from

[120], we use b, d and i respectively to denote belief, disbelief, and ignorance.

In SLTM, it is assumed that

b+ d+ i = 1, {b, d, i} ∈ [0, 1]3, (19)

and an opinion on trust can be uniquely described by the triplet π = {b, d, i}.

See Algorithm 5 for a pseudo-code to implement trust inference based on SLTM.

In [121], Ivanovska et al. present a method for computing the joint subjec-

tive opinion of multiple variables. In [122], Pope and Jøsang develop a subjec-

tive logic based approach to the evaluation of competing hypotheses. In [123],
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Algorithm 5: A pseudo-code to implement trust inference based on SLTM

1: Set the initial subjective opinion about the trust via a ternary array
SO = {b, d, i} that satisfies Eqn.(19).

2: for k=1,2,. . . do
3: Given a new observation yk, which is in the form of a subjective opinion

about the trust, construct another ternary array, denoted by
SO′ = {b′, d′, i′}, to model yk;

4: Update the posterior subjective opinion about the trust by setting
SO ← s(SO, SO′), where s denotes a subjective logic operator, the
details about which are referred to literature on the subjective logic,
e.g., [26].

5: end for

Ivanovska, Jøsang, and Sambo present an extension of Bayesian deduction to

the framework of subjective logic. In [124], Jøsang focuses on the conditional

reasoning in subjective logic, whereby beliefs are represented as binomial or

multinomial subjective opinions. In [125] and [126], the authors address the is-

sue of subjective logic based belief fusion, which consists of taking into account

multiple sources of belief about a domain of interest. In particular, the article

[125] discusses the selection of belief fusion operators and suggests to consider

the nature of the situation to be modeled in searching the most appropriate one.

The paper [126] describes cumulative and averaging multi-source belief fusion

in the formalism of subjective logic, which represents generalizations of binary-

source belief fusion operators. In [127], Jøsang and Kaplan introduce the term

subjective networks, which generalizes Bayesian networks by letting it be based

on subjective logic instead of probability calculus. In [29], Oren, Norman, and

Preece introduce a subjective logic based argumentation framework, which is

primarily used for evidential reasoning.

In [26], Jøsang applies SLTM to determine the trustworthiness of agents

that are responsible for key generation and distribution in open networks. In

[22], Alhadad et al. use subjective logic to express and deal with uncertainty

in evaluating trust in a graph composed of paths that have common nodes.

In [128, 129], Jøsang et al. present an SLTM based method for trust network

analysis. In [130], Liu et al. present a subjective logic based reputation model
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for blocking selfish behaviors in MANETs.

5.1. On relationships between SLTM and GBT

In this section, we discuss the connections between SLTM and GBT. As

aforementioned, the most important feature of SLTM is that it allows to quan-

titatively measure the degree of ignorance in evaluating whether a trustee is

trusted or not. It models belief b, disbelief d, and ignorance i on the trustwor-

thiness of the trustee by a triplet π = {b, d, i}, which satisfies (19). In concept,

we can interpret i as an intermediate state on the ‘belief’-‘disbelief’ scale. Now

let us suppose that, in the context of DDTM, the interaction outcomes between

the trustor (or advisor) and the trustee can be represented by three degrees

of belief on the trustworthiness of the trustee, namely ‘belief’ b, ‘ignorance’ i,

and ‘disbelief’ d. Then the trust parameter can be represented as Θ ≡ [b, i, d].

Let the prior of Θ follow a Dirichlet distribution D(α1, α2, α3). Then, given an

n-sequence X of trials (n = n1+n2+n3) with 3 distinct outcomes, the posterior

follows the Dirichlet distribution

D(α1 + n1, α2 + n2, α3 + n3), (20)

where nj counts the occurrences of the jth type outcome in the sequence X. As

is shown, a bijective mapping between subjective opinions leveraged in SLTM

and evidence parameters of Dirichlet pdfs exists. This bijective mapping is

confirmed in [125]. In [123], Ivanovska, Jøsang and Sambo also state that

“Every subjective opinion can be “projected” to a single probabil-

ity distribution, called projected probability distribution which is

an important characteristic of the opinion since it unifies all of its

defining parameters.”

This mapping has been exploited for translating from inference with subjective

opinions to inference with a corresponding Dirichlet pdf [131, 132].

To summarize, DDTM can also be applied to measure the degree of ignorance

in evaluating the trustworthiness of a trustee, in a similar spirit as SLTM.
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Table 1: A comparison of the model types under survey in terms of the data type to be

processed, forms of the prior and the likelihood function adopted

Model Class type of observation Prior Likelihood

BDTM Binary Beta Binomial
DDTM multiple typed Dirichlet multinomial
SSTM Continuous truncated normal any form
SLTM Three-valued a ternary array {b, d, i} N/A
GBT any type any form any form

Table 2: Properties of Bayesian trust models

item BDTM DDTM SSTM GBT

Conjugate prior required? yes yes no no
Support analytic inference? yes yes no depends

Explicitly model the evolution of trust? no no yes yes
application-specific? yes yes yes no

Since DDTM can be regarded as a specific ad hoc implementation of the GBT

framework, as discussed in Section 3.3, the connections between SLTM and the

GBT framework is built by using the DDTM as a bridge between them.

6. An overall comparison of all model types under survey

In this section, we attempt to give a big picture of relationships among

the aforementioned model types. Table 1 lists the data types to be processed,

forms of the prior and the likelihood function adopted, by each model type

under consideration. In this table, we show that adopting the GBT perspective

allows us to process any type of observations, either discrete or continuously

valued, and adopt any form of prior or likelihood functions, in a completely

Bayesian manner. This prominent feature of the GBT perspective can extend

the application scope of Bayesian-based trust models to wider areas. A further

comparison for model types within the Bayesian paradigm is presented in Table

2. It shows that, compared with BDTM, DDTM, and SSTM, GBT perspective

is more flexible and generic.
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7. Discussions on the GBT perspective

In this section, we discuss the capabilities, limitations of the GBT perspec-

tive in trust modeling, and then point out several open research issues to answer

in the way to advance it to become a pragmatic infrastructure for analyzing in-

trinsic relationships between variants of trust models and for developing novel

ones for trust evaluation.

7.1. On capabilities of the GBT perspective

As presented in Sections 3.3, 4.1, and 5.1, the GBT perspective provides a

basic theoretical tie that connects BDTM, DDTM, SSTM, and SLTM together.

It is shown that all these models cast into a common framework as special im-

plementation cases of the GBT perspective. This is due to the natural power

the Bayesian philosophy owns in uncertainty quantification and the inherent ca-

pabilities possessed by the GBT perspective, which will be discussed as follows.

7.1.1. Capability to characterize the non-symmetry property of the trust

It is an agreement in the literature that trust is not symmetric [9, 111], which

implies that two peers involved in an interaction may not necessarily have the

same trust in each other, even if they are presented with the same evidence. This

is because the trustor and trustee may not necessarily interpret the outcome of

each interaction in the same way [111].

The GBT perspective provides a natural way to take into account of such

aforementioned non-symmetry in the interpretation of interaction outcomes.

Consider again an interaction involving two agents 1 and 2. Denote the data

yielded from this interaction as y. Then we can use two different likelihood

functions, represented here as p1→2(y|θ2) and p2→1(y|θ1), to formulate the two

different interpretations of y, from perspectives of agent 1 and 2, respectively.

Here θ1 and θ2 denote agent 2’s trust in agent 1 and agent 1’s trust in agent 2,

respectively.
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7.1.2. Capability to take account of the dynamic property of the trust

Some trust models, like TRAVOS, assume that the behavior of agents does

not change over time [107], while in many cases agents may change their behavior

over time actively or passively. In particular, some agents may have time-

based behavioral strategies. The GBT perspective provides at least two simple

mechanisms for taking account of the dynamic property of the trust. The first

one is to characterize the time-evolution law of trust directly through the state

transition function (2). It has been proved successful in a number of applications

[80, 119, 77]. The other mechanism is to design a likelihood function that can

reflect the effect of time on the trust value. For instance, in the likelihood

function, we can assign each observation a weight, whose value depends on when

this observation was generated. A similar strategy of downweighting out-of-date

ratings is presented in [75].

7.1.3. Capability to model the transitivity of trust

The property of transitivity of trust is often employed in establishing trust

relationships between a pair of peers that have never interacted before. In such

situations, an intermediary peer, also known as an advisor or third-party peer,

can help if we allow for transitive trust. The question needed to be addressed

is that if the trustor trusts the advisor to some extent, and the advisor has past

experience in interacting with the trustee, then to what extent the trustor should

trust the trustee. This notion of transitive trust is very natural in many domains,

e.g., when buyers of a product recommend this product to new buyers and

audience of a movie recommend this movie to new audience. We can handle this

transitivity issue flexibly and efficiently when adopting the GBT perspective.

Suppose that an advisor provide historical data about the trustee to the trustor.

From the trustor’s point of view, the observation it receives consists of two parts,

namely the trustor’s trust θa in the advisor, and the historical data X about

the trustee. We can design an appropriate likelihood function p(X |θ, θa) to take

account of the transitivity issue, while the form of the likelihood function is

dependant on application domains. Suppose that the BDTM is under use, and
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X is an n-sequence ofm successes, then we have p(X |θ, θa) = θθam(1−θ)θa(n−m).

Assume that the prior pdf follows B(α, β), then the posterior pdf becomes

B(α + θam,β + θa(n − m)). It is clear that the value θa determines to what

extent the data X influences the posterior. If θa = 0, which means that the

advisor is totally distrusted, then the posterior is equivalent with the prior,

indicating that the data provided by this advisor brings no new information on

the trustworthiness of the trustee.

7.1.4. A potential capability to deal with data sparsity

The issue of data sparsity often appears in a very large network. For example,

for some large e-commerce sites, the number of sellers and buyers is so large that

a buyer can hardly meet the same seller [133]. In [134], Resnick and Zeckhauser

conduct an empirical study using eBay transaction data within a time period

of five-month. They show that 89.0% out of all seller-buyer pairs conducted

only one transaction and 98.9% conducted less than four. It implies that the

seller’s trustworthiness is mostly evaluated based on a single transaction record

by the buyers. In [135], Zhou and Hwang also confirm that it is extremely rare

to find a node with a large number of feedbacks in a dynamically growing P2P

network, because most of the network nodes only receive a few feedbacks.

Most approaches work under a basic assumption that two agents can repeat-

edly interact with each other, which may be the case for a small-size network.

Because of the aforementioned data sparsity issue, these approaches are likely

to fail to provide a satisfactory performance for large-scale networks.

As discussed in previous sections, the GBT perspective provides a theo-

retically sound way to analyze and integrate various typed observations, such

as binary data, multi-valued data, subjective opinions, based on a consistent

modeling language. To conquer problems resulted from data sparsity, we may

leverage the power of GBT to take into account of social data, e.g., roles of

and relationships between participating peers, and subject opinions of domain

experts, in forming a more accurate trust assessment.
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7.2. On limitations of GBT in trust modeling

As a data-driven modeling framework, the success of a GBT based solution

may depend crucially on the quality and richness of data and domain knowledge

available. For example, if some third-party advisors provide unfair ratings of

the trustee, then it requires that there be enough peers who offer honest ratings

to override the effect of unfair ones. Provided that there is no other social

metadata or domain knowledge available for use, a GBT based solution is likely

to fail to produce an accurate trust evaluation due to shortage of honest rating

data.

As discussed in Section 7.1.4, GBT has the potential capability to handle

data sparsity, while its working requires preexisting social relationships among

the network peers or domain knowledge about the network. But they may not

exist in practical cases. For such cases, concrete security mechanisms, such as

methods based on credentials and policies, may be the only way to establish a

trust relationship between peers.

Another limitation of GBT lies in a heavy computation and memory burden

caused by running PF in scenarios that demand lightweight algorithms. As a

sequential sampling based approximation method, the computation and mem-

ory burden of PF is linearly dependant on the sample size. Thus, to reduce

computation burden, the sample size needs to be controlled elaborately, oth-

erwise, the accuracy of PF estimation will deteriorate severely. So unless the

PF theory itself makes progress, the application scope of GBT based solutions

are restricted. Another choice to get rid of heavy computation burden of PF

is to employ a conjugate pair of prior pdf and likelihood function, while this

may lead to performance deterioration due to model mismatch. To conquer

the above limitation, the fundamental solution should come from advances in

semiconductor technology that can enable a network agent to perform more

computations and possess larger capacities in the memory.
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7.3. Open research questions

7.3.1. How to set an appropriate initial prior pdf of trust to start the computa-

tion engine

Running of any algorithm in a Bayesian flavor requires a pre-setting of the

initial pdf, namely, p(θ0) in the GBT framework. On one side, we hope that this

prior pdf can reflect accurately the trustor’s prior knowledge on the trustwor-

thiness of the trustee, especially for cases in which the trustor has inadequate

observations in generating the posterior estimate from the prior. On the other

side, we hope that a prior pdf conjugate with the likelihood function can be

used since this can make the posterior inference analytically tractable. Thus,

how to balance the requirement of representation accuracy and that of compu-

tational tractability in setting the prior pdfs remains the first open question to

be resolved.

7.3.2. How to characterize multi-faceted and differentiated sides of trust in a

model

As a complicated concept, trust itself usually has multi-faceted and differ-

entiated sides in practice. For instance, an overall trust of a WSN system can

be decomposed into two components, termed communication trust and data

trust, representing two different aspects of the system trust [50]. The question

is how to evaluate the trustworthiness of a system by taking account of the

trustworthiness of the subsystems or atomic components and the uncertainty

associated with this information [136]. The consideration of the trustworthi-

ness of the subsystems may be independent from how these trust values are

assessed. The challenge lies in that, by piecing together trustworthiness of the

separate entities that compose a system, we usually can not get a result that

describes the trustworthiness of the whole system. Indeed, one of the major

factors that influence the trust in a system is the architecture of the system,

which can not be reflected by trustworthiness of the separate entities. In spite

of a few application-specific attempts in the literature, e.g., methods based on

the Bayesian network [133, 82, 137], there lacks a generic strategy or theory to
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address the above question, especially for complex network systems.

7.3.3. How to connect trust with decision and action

The trust models provide a formal language for discussing interactions be-

tween agents, while, given a trust model, a natural question remains unad-

dressed, namely, in general terms, how to choose decisions or actions for the

trustor based on the result of trust inference. In a principled way, we can resort

to decision theory [138], which states that a rational agent should always act

to maximize its expected utility (EU). We use U : Θ → R to denote a utility

function, for which higher values indicate more preferred outcomes, and vice

versa, then EU is calculated as follows

EU =

∫

U(Θ)p(Θ)dΘ. (21)

An appropriate utility function is required to be prescribed beforehand accord-

ing to the trustor’s domain-specific goals and preferences.

7.3.4. How to characterize trust transfer across different domains in a model

The phenomenon of trust transfer across domains is common in real life.

For example, a middle school student who is proficient in math is likely to be

also proficient in physics. It indicates that our trust in this student in terms of

physics can be transferred from that in terms of math. While the notion of trust

transfer is intuitively easy to comprehend, it has not been modeled formally in

the literature. We argue that trust transfer is a concept that is closely related

with the notion of multi-faceted and differentiated trust since trust in terms of

a specific domain can be interpreted as one aspect of the system trust, which is

defined across all domains considered.

8. Conclusion

This paper surveys trust models from a Bayesian perspective by systematiz-

ing the knowledge from a long list of trust-related research articles. Specifically,
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a general perspective for trust modeling and evaluation termed GBT is high-

lighted. It is shown that all models under survey can cast into a GBT based

framework. The connections from each surveyed model to the GBT framework

are clarified. Both capabilities and limitations of the GBT perspective are dis-

cussed, and a number of open research questions are pointed out. Despite the

complex character of trust, here we make an attempt to promote the accumu-

lation rather than the fragmentation of theory and research on trust, hoping

that this may be helpful for stimulating further and deeper research on trust

modeling for networked agents.
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