Skip to main content

Advertisement

Log in

Energy Efficient Opportunistic Routing with Sleep Scheduling in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The network life of wireless sensor networks (WSNs) relies on the limited energy of non-rechargeable batteries used at the sensor node. Hence, maximum energy saving is essential in the research area while designing a routing algorithm for the WSNs. An energy-saving opportunistic routing (ENS_OR) uses an opportunistic routing concept to improve network performance while relaying data. In this paper, the ENS_OR is further revised with a sleep scheduling algorithm to reduce energy dissipation in one dimensional topology. The proposed sleep scheduling algorithm is designed to enhance network performance by minimizing energy dissipation due to the idle listening of nodes. Sleep interval is adaptive, and it is made proportional to the residual energy of nodes as well as the flow rate of the network. The results of the proposed algorithm are analyzed and compared with ENS_OR without sleep mode and other routing protocols used in WSNs. The results prove that ENS_OR with sleep mode is beneficial to conserve energy for a prolonged lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated network sensors. ACM Communications, 43(5), 51–58.

    Article  Google Scholar 

  2. Ren, F., Zhang, J., He, T., Lin, C., & Das, S. K. (2011). EBRP: Energy balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.

    Article  Google Scholar 

  3. Jadhav, P., & Satao, R. (2016). A survey on opportunistic routing protocols for wireless sensor networks. Procedia Computer Science, 79, 603–609.

    Article  Google Scholar 

  4. Ghasemi, A., & Nader-Esfahani, S. (2006). Exact probability of connectivity one-dimensional ad hoc wireless networks. IEEE Communication Letters, 10(4), 251–253.

    Article  Google Scholar 

  5. Behnad, A., & Nader-Esfahani, S. (2011). On the statistics of MFR routing in one-dimensional ad hoc networks. IEEE Transaction on Vehicular Technology, 60(7), 3276–3289.

    Article  Google Scholar 

  6. Keshtkarjahromi, Y., Ansari, R., & Khokhar, A. (2013). Energy efficient decentralized detection based on bit-optimal multi-hop transmission in one-dimensional wireless sensor networks. In Proceedings of international federation of information processing wireless days (WD) (pp. 1–8).

  7. Mounika, M., & Chinnaswamy, C. N. (2016). Opportunistic routing protocols for wireless sensor networks: A survey. International Journal of Computer Science and Information Technologies (IJCSIT), 7(2), 928–931.

    Google Scholar 

  8. Chakchouk, N. (2015). A survey on opportunistic routing in wireless communication networks. IEEE Communications Surveys and Tutorials, 17, 2214–2241. https://doi.org/10.1109/COMST.2015.2411335.

    Article  Google Scholar 

  9. Biswas, S., & Morris, R. (2005). EXOR: Opportunistic multi-hop routing for wireless networks. SIGCOMM Computer Communication Review, 35(4), 133–144.

    Article  Google Scholar 

  10. Chachulski, S., Jennings, M., Katti, S., & Katabi, D. (2007). ACM Sigcomm: MORE: A network coding approach to opportunistic routing.

  11. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaf) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

    Article  Google Scholar 

  12. Mao, X., et al. (2015). Energy-efficient opportunistic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(5), 1934–1942.

    Google Scholar 

  13. Pantazis, N. A., & Vergados, D. D. (2007). A survey on power control issues in wireless sensor networks. IEEE Communication Survey Tutor, 9(4), 86–107.

    Article  Google Scholar 

  14. Wei, Y., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings on twenty-first annual joint conference of the IEEE computer and communications societies INFOCOM.

  15. Kim, Y., Yang, C., & Lieu, C. (2008). Throughput analysis of randomized sleep scheduling with constrained connectivity in WSN. In IEEE GLOBECOM Proceedings.

  16. Wang, Y., Wang, D., Fu, W., & Agarwal, D. P. (2006). Hops-based sleep scheduling algorithm for enhancing lifetime of wireless sensor network. In IEEE International conference on mobile adhoc and sensor systems (pp. 709–714).

  17. Ergen, S. C., & Varaiya, P. (2010). TDMA scheduling algorithm for wireless sensor network. Wireless Networks, 16(4), 985–997.

    Article  Google Scholar 

  18. Jang, B., Lim, J. B., & Sichitiu, M. L. (2013). An asynchronous scheduled MAC protocol for wireless sensor networks. Journal of Computer Networks, 57, 85–98.

    Article  Google Scholar 

  19. Keshavarzian, A., Lee, H., & Venkatraman, L. (2006). Wakeup scheduling in wireless sensor networks. In Proceedings of 7th ACM international symposium on mobihoc (pp. 322–333). Italy: Florence.

  20. Liu, D., Zheng, Z., Yuan, Z., & Li, W. (2012). An improved TPSN algorithm for time synchronization in wireless sensor network. In 32nd international conference on distributed computing systems workshop (pp. 279–284).

  21. Gu, L., & Stankovic, J. A. (2004). Radio-triggered wake-up capability for sensor networks. In Proceedings of 10th IEEE real time embedded technology and applications symposium (pp. 27–37). Toronto, ON, Canada.

  22. Guo, P., Jiang, T., Zhang, Q., & Zhang, K. (2012). Sleep scheduling for critical event monitoring in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(2), 345–352.

    Article  Google Scholar 

  23. Schurgers, C., Tsiatsis, V., & Srivastava, M. B. (2002). STEM: Topology management for energy efficient sensor networks. In Proceedings on aerospace conference.

  24. Joohwan, K., Xiaojun, L., Shroff, N. B., & Sinha, P. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.

    Article  Google Scholar 

  25. Nazir, B., Hasbullah, H., & Madani, S. A. (2011). Sleep/wake scheduling scheme for minimizing end to end delay in Multihop wireless sensor networks. EURASIP Journal on Wireless Communication and Networking,2011(1), 92.

    Article  Google Scholar 

  26. Nath, S., & Gibbons, P. B. (2007). Communicating via fireflies: Geographic routing on duty-cycled sensors. In Proceedings of the 6th international conference on information proceedings in sensor networks (pp. 440–449).

  27. Dunkels, A. (2011). The ContikiMAC radio duty cycling protocol. SICS technical report T2011 (vol. 13, pp. 1–11).

  28. Tripathi, J., de Oliveira, J., & Vasseur, J. (2010). A performance evaluation study of RPL: Routing protocol for low power and lossy networks. In 44th annual conference on information sciences and systems (CISS) (pp. 1–6).

  29. Ahmadi, A., Shojafar, M., Hajeforosh, S. F., Dehghan, M., & Singhal, M. (2013). An efficient routing algorithm to preserve k-coverage in wireless sensor networks. The Journal of Supercomputing, 68(2), 599–623.

  30. Del-Valle-Soto, C., Mex-Perera, C., Orozco-Lugo, A., Lara, M., Galvan-Tejada, G. M., & Olmedo, O. (2014). On the MAC/network/energy performance evaluation of wireless sensor networks: Contrasting MPH, AODV, DSR and ZTR routing protocols. Journal of Sensor Networks, 14, 22811–22847.

    Google Scholar 

  31. Naranjo, V., Paola, G., Shojafar, M., Mostafaei, H., Pooranian, Z., & Baccarelli, E. J. (2016). P-SEP: A prolong stable election routing algorithm for energy limited heterogenous fog-supported sensor networks. Journal of Supercomputing, 73(2), 733–755.

    Article  Google Scholar 

  32. Bhardwaj, M., Garnett, T., & Chandrakasan, A. P. (2001). Upper bounds on the lifetime of sensor networks. In Proceedings of IEEE international conference on communication (ICC’01) (vol. 3, pp. 785–790).

  33. Min, R., Bhardwaj, M., Ickes, N., Wang, A., & Chandrakasan, A. (2002). The hardware and the network: Total-system strategies for power aware wireless microsensors. In Proceedings of IEEE CAS workshop wireless communication networks (pp. 12–36). Pasadena, CA, USA.

  34. Luo, J., Hu, J., Wu, D., & Li, R. (2015). Opportunistic routing algorithm for relay node selection in wireless sensor networks. IEEE Transactions on Industrial Informatics, 11, 112–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Prashant Mhatre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhatre, K.P., Khot, U.P. Energy Efficient Opportunistic Routing with Sleep Scheduling in Wireless Sensor Networks. Wireless Pers Commun 112, 1243–1263 (2020). https://doi.org/10.1007/s11277-020-07100-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07100-z

Keywords

Navigation