Skip to main content
Log in

Power and Delay Efficient Multilevel Offloading Strategies for Mobile Cloud Computing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile cloud computing has introduced offloading to save the battery life of mobile devices. In mobile cloud computing optimization of power and delay for offloading has become a vital research scope. However, migration of the storage and computation from the mobile device to the remote cloud server enhances the delay and power consumption. To overcome this difficulty, cloudlet comes which is located nearby the mobile device. Since the cloudlet may not be able to fulfill all the offloading requests, sometimes remote public cloud server is used for the same. As a result the power and delay consumptions are increased. For solving this difficulty, private cloud server is used in our scheme along with the cloudlet and public cloud server. In this paper multilevel full and partial offloading strategies are proposed based on cloudlet, private and public cloud servers. The power and delay consumption in the proposed methods are determined and compared with the existing offloading methods. The theoretical and experimental analyses demonstrate that the proposed multilevel offloading methods are power and delay efficient. The simulation results show that the proposed multilevel full and partial offloading strategies reduce the power consumption by approximately 8–9% and 20% respectively than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. Future Generation Computer Systems,29(1), 84–106.

    Article  Google Scholar 

  2. Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: Architecture, applications, and approaches. Wireless Communications and Mobile Computing,13(18), 1587–1611.

    Article  Google Scholar 

  3. Kumar, K., & Lu, Y. H. (2010). Cloud computing for mobile users: Can offloading computation save energy? Computer,4, 51–56.

    Article  Google Scholar 

  4. Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2010). Cuckoo: a computation offloading framework for smartphones. In Mobile computing, application and sevices (pp. 59–79).

  5. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based cloudlets in mobile computing. Pervasive Computing, IEEE,8(4), 14–23.

    Article  Google Scholar 

  6. Mukherjee, A., De, D., & Guha Roy, D. (2016). A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions on Cloud Computing,7, 141–154. https://doi.org/10.1109/tcc.2016.2586061.

    Article  Google Scholar 

  7. Jia, M., Cao, J., & Liang, W. (2015). Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Transactions on Cloud Computing,5(4), 725–737.

    Article  Google Scholar 

  8. Gai, K., Qiu, M., Zhao, H., Tao, L., & Zong, Z. (2016). Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. Journal of Network and Computer Applications,59, 46–54.

    Article  Google Scholar 

  9. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X. (2012). Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In IEEE INFOCOM proceedings (pp. 945–953).

  10. Chen, M., Hao, Y., Lai, C. F., Wu, D., Li, Y., & Hwang, K. (2016). Opportunistic task scheduling over co-located clouds in mobile environment. IEEE Transactions on Services Computing,11(3), 549–561.

    Article  Google Scholar 

  11. Mukherjee, A., & De, D. (2016). Low power offloading strategy for femto-cloud mobile network. Engineering Science and Technology, an International Journal,19(1), 260–270.

    Article  Google Scholar 

  12. Wang, T., Li, P., Wang, X., Wang, Y., Guo, T., & Cao, Y. (2019). A comprehensive survey on mobile data offloading in heterogeneous network. Wireless Networks,25(2), 573–584.

    Article  Google Scholar 

  13. Zhou, H., Wang, H., Li, X., & Leung, V. C. (2018). A survey on mobile data offloading technologies. IEEE Access,6, 5101–5111.

    Article  Google Scholar 

  14. Mehmeti, F., & Spyropoulos, T. (2017). Performance analysis of mobile data offloading in heterogeneous networks. IEEE Transactions on Mobile Computing,16(2), 482–497.

    Article  Google Scholar 

  15. Han, B., Hui, P., Kumar, V. A., Marathe, M. V., Shao, J., & Srinivasan, A. (2011). Mobile data offloading through opportunistic communications and social participation. IEEE Transactions on Mobile Computing,11(5), 821–834.

    Article  Google Scholar 

  16. Dash, S. K., Dash, S., Mishra, J., & Mishra, S. (2020). Opportunistic mobile data offloading using machine learning approach. Wireless Personal Communications, 110(1), 125–139.

    Article  Google Scholar 

  17. Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Networks and Applications,18(1), 129–140.

    Article  Google Scholar 

  18. Akherfi, K., Gerndt, M., & Harroud, H. (2018). Mobile cloud computing for computation offloading: Issues and challenges. Applied computing and informatics,14(1), 1–16.

    Article  Google Scholar 

  19. Tang, L., & He, S. (2018). Multi-user computation offloading in mobile edge computing: A behavioral perspective. IEEE Network,32(1), 48–53.

    Article  Google Scholar 

  20. Manukumar, S. T., & Muthuswamy, V. (2019). A novel multi-objective efficient offloading decision framework in cloud computing for mobile computing applications. Wireless Personal Communications, 107(4), 1625–1642.

    Article  Google Scholar 

  21. Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N., & Buyya, R. (2015). mCloud: A context-aware offloading framework for heterogeneous mobile cloud. IEEE Transactions on Services Computing,10(5), 797–810.

    Article  Google Scholar 

  22. Mahmud, R., Kotagiri, R., & Buyya, R. (2018). Fog computing: A taxonomy, survey and future directions. In Internet of everything (pp. 103–130). Singapore: Springer.

  23. Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing: concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37–42). ACM.

  24. Yi, S., Hao, Z., Qin, Z., & Li, Q. (2015, November). Fog computing: Platform and applications. In 2015 third IEEE workshop on hot topics in web systems and technologies (HotWeb) (pp. 73–78). IEEE.

  25. Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM Computer Communication Review,44(5), 27–32.

    Article  Google Scholar 

  26. Orsini, G., Bade, D., & Lamersdorf, W. (2015, October). Computing at the mobile edge: Designing elastic android applications for computation offloading. In 2015 8th IFIP wireless and mobile networking conference (WMNC) (pp. 112–119). IEEE.

  27. Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials,19(3), 1628–1656.

    Article  Google Scholar 

  28. Chang, Z., Zhou, Z., Ristaniemi, T., & Niu, Z. (2017, December). Energy efficient optimization for computation offloading in fog computing system. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6). IEEE.

  29. Du, J., Zhao, L., Feng, J., & Chu, X. (2018). Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on Communications,66(4), 1594–1608.

    Article  Google Scholar 

  30. Ning, Z. et al. (2018). A cooperative partial computation offloading scheme for mobile edge computing enabled Internet of Things. IEEE Internet of Things Journal, 6(3), 4804–4814.

    Article  Google Scholar 

  31. Mukherjee, A., Deb, P., De, D., & Buyya, R. (2018). C2OF2N: a low power cooperative code offloading method for femtolet-based fog network. The Journal of Supercomputing,74(6), 2412–2448.

    Article  Google Scholar 

  32. Rao, X., Zhao, L., Liang, K., & Wang, K. (2019). Edge caching and computation offloading for fog-enabled radio access network. Wireless Personal Communications, 109(1), 297–313.

    Article  Google Scholar 

  33. Zhang, J., Xia, W., Yan, F., & Shen, L. (2018). Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing. IEEE Access,6, 19324–19337.

    Article  Google Scholar 

  34. Chen, M., & Hao, Y. (2018). Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications,36(3), 587–597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Debashis De and Deepsubhra Guha Roy: Formerly, West Bengal University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, D., Mukherjee, A. & Guha Roy, D. Power and Delay Efficient Multilevel Offloading Strategies for Mobile Cloud Computing. Wireless Pers Commun 112, 2159–2186 (2020). https://doi.org/10.1007/s11277-020-07144-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07144-1

Keywords

Navigation