Skip to main content

Advertisement

Log in

Fractional-Grasshopper Optimization Algorithm for the Sensor Activation Control in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The progression in wireless sensor network (WSN) has been increased and gained immense attention in computer vision. In WSN, a large number of sensors are deployed for performing distributed sensing of target field. The conventional methods used wireless chargers for providing the energy to sensor nodes, but the supplied energy is not sufficient for controlling the sensor nodes. Thus, this paper proposes a technique for reducing the energy consumption per node by adapting effective scheduling of sleep/awake of the nodes. The method undergoes two phases for the sensor activation namely, initialization phase, and activation phase. The initialization phase is progressed by the network initiation, which is done to convey the network parameters to the nodes or sensor. Then, in activation phase, the proposed optimization algorithm is utilized for activating the sensors in each slot. The proposed fractional grasshopper optimization algorithm (Fractional-GOA) is the integration of the fractional calculus in grasshopper optimization algorithm (GOA). Thus, the proposed method generates the control regarding the turn-ON or OFF of the sensors, which symbolizes the active sensors and engages itself in sensing and monitoring the distributed environment. The proposed method outperforms other existing method with maximal energy, throughput, and alive nodes of 0.111, 85%, and 11, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054.

    Article  Google Scholar 

  2. Shaikh, F. K., Zeadally, S., & Exposito, E. (2015). Enabling technologies for green internet of things. IEEE Systems Journal, 11(2), 983–994.

    Article  Google Scholar 

  3. Bi, S., & Zhang, R. (2015). Placement optimization of energy and information access points in wireless powered communication networks. IEEE Transactions on Wireless Communications,15(3), 2351–2364.

    Article  Google Scholar 

  4. Kaur, S., & Mir, R. N. (2016). Energy efficiency optimization in wireless sensor network using proposed load balancing approach. International Journal of Computer Networks and Applications,3(5), 108–117.

    Article  Google Scholar 

  5. Ren, J., Zhang, Y., Zhang, K., Liu, A., Chen, J., & Shen, X. S. (2014). Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics,12(2), 788–800.

    Article  Google Scholar 

  6. Tung, H. Y., Tsang, K. F., Chui, K. T., Tung, H. C., Chi, H. R., Hancke, G. P., et al. (2013). The generic design of a high-traffic advanced metering infrastructure using ZigBee. IEEE Transactions on Industrial Informatics,10(1), 836–844.

    Article  Google Scholar 

  7. Magno, M., Boyle, D., Brunelli, D., Popovici, E., & Benini, L. (2014). Ensuring survivability of resource-intensive sensor networks through ultra-low power overlays. IEEE Transactions on Industrial Informatics,10(2), 946–956.

    Article  Google Scholar 

  8. Ren, J., Zhang, Y., & Liu, K. (2015). An energy-efficient cyclic diversionary routing strategy against global eavesdroppers in wireless sensor networks. International Journal of Distributed Sensor Networks,9(4), 834245.

    Article  Google Scholar 

  9. Chen, J., Cao, K., Sun, Y., & Shen, X. (2009). Adaptive sensor activation for target tracking in wireless sensor networks, In Proceedings of international conference on communications (pp. 1–5).

  10. Sears, D., & Rudie, K. (2016). Minimal sensor activation and minimal communication in discrete-event systems. Discrete Event Dynamic Systems,26(2), 295–349.

    Article  MathSciNet  Google Scholar 

  11. Lersteau, C., Rossi, A., & Sevaux, M. (2016). Robust scheduling of wireless sensor networks for target tracking under uncertainty. European Journal of Operational Research,252(2), 407–417.

    Article  MathSciNet  Google Scholar 

  12. Pattem, S., Poduri, S., & Krishnamachari, B. (2003). Energy-quality tradeoffs for target tracking in wireless sensor networks. In Information processing in sensor networks (pp. 32–46). Springer, Berlin, Heidelberg.

  13. Alibeiki, A., Motameni, H., & Mohamadi, H. (2019). A new genetic-based approach for maximizing network lifetime in directional sensor networks with adjustable sensing ranges. Pervasive and Mobile Computing,52, 1–12.

    Article  Google Scholar 

  14. Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal,16(20), 7409–7420.

    Article  Google Scholar 

  15. Kasbekar, G. S., Bejerano, Y., & Sarkar, S. (2010). Lifetime and coverage guarantees through distributed coordinate-free sensor activation. IEEE/ACM Transactions on Networking,19(2), 470–483.

    Article  Google Scholar 

  16. Abuzainab, N., & Saad, W. (2019). A graphical Bayesian game for secure sensor activation in internet of battlefield things. Ad Hoc Networks,85, 103–109.

    Article  Google Scholar 

  17. Du, R., Xiao, M., & Fischione, C. (2019). Optimal node deployment and energy provision for wirelessly powered sensor networks. IEEE Journal on Selected Areas in Communications,37(2), 407–423.

    Article  Google Scholar 

  18. Xu, W., Liang, W., Jia, X., Xu, Z., Li, Z., & Liu, Y. (2017). Maximizing sensor lifetime with the minimal service cost of a mobile charger in wireless sensor networks. IEEE Transactions on Mobile Computing,17, 2564–2577.

    Article  Google Scholar 

  19. Liao, C.-C., & Ting, C.-K. (2018). A novel integer-coded memetic algorithm for the set k-cover problem in wireless sensor networks. IEEE Transactions on Cybernetics,48(8), 2245–2258.

    Article  MathSciNet  Google Scholar 

  20. Nesa, N., & Banerjee, I. (2018). SensorRank: An energy efficient sensor activation algorithm for sensor data fusion in wireless networks. IEEE Internet of Things Journal,6(2), 2532–2539.

    Article  Google Scholar 

  21. Nguyen, T. G., So-In, C., Nguyen, N. G., & Phoemphon, S. (2017). A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks. Peer-to-Peer Networking and Applications,10(3), 519–536.

    Article  Google Scholar 

  22. Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access,5, 12318–12337.

    Article  Google Scholar 

  23. Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation,30, 1–10.

    Article  Google Scholar 

  24. Katre, S. S., & Gosavi, S. K. (2018). Challenges and issues in wireless sensor network–a review. International Research Journal of Engineering and Technology (IRJET), 5(4).

  25. Bhaladhare, P. R., & Jinwala, D. C. (2014). A clustering approach for the-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm. Advances in Computer Engineering, 2014, 396529. https://doi.org/10.1155/2014/396529.

    Article  Google Scholar 

  26. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software,105, 30–47.

    Article  Google Scholar 

  27. Yadav, A. K., & Tripathi, S. (2017). QMRPRNS: Design of QoS multicast routing protocol using reliable node selection scheme for MANETs. Peer-to-Peer Networking and Applications,10(4), 897–909.

    Article  Google Scholar 

  28. Balachandra, M., Prema, K. V., & Makkithaya, K. (2014). Multiconstrained and multipath QoS aware routing protocol for MANETs. Wireless networks,20(8), 2395–2408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Tanwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, A., Sharma, A.K. & Pandey, R.V.S. Fractional-Grasshopper Optimization Algorithm for the Sensor Activation Control in Wireless Sensor Networks. Wireless Pers Commun 113, 399–422 (2020). https://doi.org/10.1007/s11277-020-07206-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07206-4

Keywords

Navigation