Skip to main content
Log in

Design of Metamaterial Antenna for 2.4 GHz WiFi Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, Antenna is an evergreen field of research because of its never-ending demand in the modern communication era. In this paper metamaterial antenna is presented. “Meta” a Greek word defines “beyond” the materials provide properties beyond conventional materials. In this paper the metamaterial and micro patch antenna concepts are combined to improve the performance of the ordinary patch antenna. This metamaterial antenna is designed in FR4 Epoxy substrate with dielectric permittivity of 4.4, height of the substrate is 1.6 mm and loss tangent tan δ = 0.02 with a simple shape of rectangular patch of dimension 40 mm length and 30 mm width. This antenna is simulated in an integral based solver simulation software called CST Microwave studio v2018 and yielded best results such as return loss − 46.58 dB, VSWR 1.009 and bandwidth of 574 MHz, directivity is 3.379 dBi, gain is 3.23 dBi for the resonant frequency(fr) of 2.4 GHz. The feeding network is also designed for better integration in real time applications. This antenna is further fabricated and tested for the validation and obtained, VSWR 1.3, Return loss − 26 dB and Bandwidth of 200 MHz. This metamaterial antenna is suitable for 2.4 GHz WiFi applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  2. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and µ. Soviet Physics uspekhi,10(4), 509–514.

    Article  Google Scholar 

  3. Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques,47(11), 2075–2084.

    Article  Google Scholar 

  4. Sihvola, A. (2007). Metamaterials in electromagnetics. Elsevier, Metamaterials,1, 2–11.

    Article  Google Scholar 

  5. Geetharamani, G., Aathmanesan, T. A. (2020). Metamaterial inspired tapered patch antenna for WLAN/WiMAX applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07283-5.

    Article  Google Scholar 

  6. Nornikman, H., Ahmad, B. H., Aziz, M. A., & Othman A. R. (2012) Effect of single complimentary split ring resonator structure on microstrip patch antenna design. IEEE Symposium on Wireless Technology and Applications (ISWTA), 239–244, Bandung, Indonesia.

  7. Dakhli, S., Rmili, H., Floc'h, J.-M., Sheikh, M., Dobaie, A., Mahdjoubi, K., et al. (2016). Printed multiband metamaterialinspired antennas. Microwave and Optical Technology Letters,58, 1281–1289. https://doi.org/10.1002/mop.29792.

    Article  Google Scholar 

  8. Ali, T., Khaleeq, M. M., Pathan, S., & Biradar, R. C. (2017). A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications. Microwave and Optical Technology Letters, 60, 79–85. https://doi.org/10.1002/mop.30921.

    Article  Google Scholar 

  9. Rosaline, S. I., & Raghavan, S. (2016). Design of split ring antennas for wlan and wimax applications. Microwave and Optical Technology Letters,58, 2117–2122. https://doi.org/10.1002/mop.29996.

    Article  Google Scholar 

  10. Zhang, H., Li, Y.-Q., Chen, Xi, Yun-Qi, Fu, & Yuan, N.-C. (2009). Design of circular/dual- frequency linear polarization antennas based on the anisotropic complementary split ring resonator. IEEE Transactions on Antennas and Propagation,57(10), 3352–3355.

    Article  Google Scholar 

  11. Baena, J. D., Bonache, J., Martín, F., Sillero, R. M., Falcone, F., Lopetegi, T., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupledto planar transmission lines. IEEE Transactions on Microwave Theory and Techniques,53(4), 1451–1461.

    Article  Google Scholar 

  12. Zhou, L., Liu, S., Wei, Y., Chen, Y., & Gao, N. (2010). Dual-band circularly-polarised antenna based on complementary two turns spiral resonator. Electronics Letters,46(14), 970–971.

    Article  Google Scholar 

  13. Satish, K. (2015). Jain Ayush Shrivastava. Miniaturization of microstrip patch antenna using metamaterial loaded with SRR, IEEE: Gautam Shrivas.

    Google Scholar 

  14. Sahoo, A. K., Gupta, R. D., & Parihar, M. S. (2018). Slot antenna array with integrated filter for WLAN application at 52 GHz. Wireless Personal Communications,101(2), 931–941. https://doi.org/10.1007/s11277-018-5734-1.

    Article  Google Scholar 

  15. Rajkumar, R., & Kommuri, U. K. (2018). A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation. Wireless Personal Communications,101(2), 1075–1089. https://doi.org/10.1007/s11277-018-5749-7.

    Article  Google Scholar 

  16. Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communications,103(3), 1977–1991. https://doi.org/10.1007/s11277-018-5891-2.

    Article  Google Scholar 

  17. Kumar, A., Gupta, N., & Gautam, P. C. (2018). Design analysis of broadband stacked microstrip patch antenna for WLAN applications. Wireless Personal Communications,103(2), 1499–1515. https://doi.org/10.1007/s11277-018-5865-4.

    Article  Google Scholar 

  18. Torabi, Y., & Omidi, R. (2018). Novel metamaterial compact planar mimo antenna systems with improved isolation for WLAN application. Wireless Personal Communications,102(1), 399–410. https://doi.org/10.1007/s11277-018-5848-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Aathmanesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetharamani, G., Aathmanesan, T. Design of Metamaterial Antenna for 2.4 GHz WiFi Applications. Wireless Pers Commun 113, 2289–2300 (2020). https://doi.org/10.1007/s11277-020-07324-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07324-z

Keywords

Navigation