Skip to main content
Log in

Investigation and Analysis of Data Rate for Free Space Optical Communications System Under Dust Conditions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, the performance of free-space optics (FSO) communication link under dust conditions was analysed. The data were modulated by the non-return-to-zero technique. The optical link was investigated with varying data rates under the effect of dust conditions. The performance of the FSO system was tested in terms of the bit error rate (BER), Q-factor and received power at the maximum link. Simulation results were obtained to compare between two transmit data rates (0.3 and 0.7 Gbps). The system has a high BER at a high data rate. In the meantime, it has a high Q-factor at a low data rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolka, Z., Wilfert, O., Kvicala, R., & Fiser, O. (2007). Complex model of terrestrial FSO links. Proceeding of SPIE,6709, 67091J.

    Google Scholar 

  2. Rana, D. R., & Kumar, N. (2014). Enhanced performance analysis of inter-aircraft optical-wireless communication (IaOWC). System,125(1), 486–488.

    Google Scholar 

  3. Sahu, N., & Prajapti, J. C. (2015). Optimization of WDM-FSO link using multiple beams under different rain condition. International Journal of Advanced Research in Electronics and Communication Engineering,4, 1125–1131.

    Google Scholar 

  4. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys Tutorials,16(4), 2231–2258.

    Google Scholar 

  5. Andrews, L., Phillips, R., & Hopen, C. (2001). Laser beam scintillation with applications (Vol. 99). Bellingham: SPIE.

    Google Scholar 

  6. Nor, N., Raqul, I., Al-Khateeb, W., & Zabidi, S. (2012). Environmental effects on free space earth-to-satellite optical link based on measurement data in Malaysia. In Proceedings of international conference on computer and communication engineering (ICCCE’ 12) (pp. 694–699).

  7. Zabidi, S., Al-Khateeb, W., Islam, M., & Naji, W. (2010). The effect of weather on free space optics communication (FSO) under tropical weather conditions and 189 a proposed setup for measurement. In Proceedings of international conference on computer and communication engineering (ICCCE’ 10) (pp. 1–5).

  8. Abtahi, M., Lemieux, P., Mathlouthi, W., & Rusch, L. A. (2006). Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. Journal of Lightwave Technology,24(12), 4966–4973.

    Google Scholar 

  9. Arnon, S. (2005). Performance of a laser μsatellite network with an optical preamplifier. Journal of the Optical Society of America A,22(4), 708–715.

    Google Scholar 

  10. Singh, M. (2017). Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) using EDFA pre-amplifier. Wireless Personal Communications,95(1), 1–11.

    Google Scholar 

  11. Khalighi, M. A., Aitamer, N., Schwartz, N., & Bourennane, S. (2009). Turbulence mitigation by aperture averaging in wireless optical systems. In IEEE 10th international conference on telecommunications, 8th–10th, Zagreb, Croatia.

  12. Kaur, P., Jain, V. K., & Kar, S. (2014). Effect of atmospheric conditions and aperture averaging on capacity of free space optical links. Optical and Quantum Electronics,46(9), 1139–1148.

    Google Scholar 

  13. Kaur, P., Jain, V. K., & Kar, S. (2015). Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions. IET Communications,9(8), 1104–1109.

    Google Scholar 

  14. Ali, M. A. A., Adnan, S. A., & Al-Saeedi, S. A. (2019). Transporting 8*10 Gbps WDM RoFSO under various weather conditions. Journal of Optical Communication,41(1), 99–105.

    Google Scholar 

  15. Adnan, S. A., Ali, M. A. A., & Al-Saeedi, S. A. (2018). Characteristics of RF signal in free space optics (RoFSO) considering rain effect. Journal of Engineering and Applied Sciences,13(7), 1644–1648.

    Google Scholar 

  16. Shakir, F. K., Ali, M. A. A. (in press). Multi-beam free-space optical link to mitigation of rain attenuation. Journal of Optical Communication.

  17. Hitam, S., Suhaimi, S. N., Noor, A. S. M., Sahbudin, S. B. A. A., & Zakiah, R. K. (2012). Performance analysis on 16-channels wavelength division multiplexing in free space optical transmission under tropical regions environment. Journal of Computer Science,8(1), 145.

    Google Scholar 

  18. Shaddad, R., Mohammad, A. B., & Al-Hetar, A. (2011). Performance evaluation for optical backhaul and wireless front-end in hybrid optical-wireless access network. Optoelectronics and Advanced Materials: Rapid Communications,5(3–4), 376–380.

    Google Scholar 

  19. Fadhil, H. A., Amphawan, A., Shamsuddin, H. A., Hussein Abd, T., Al-Khafaji, H. M., Aljunid, S., et al. (2013). Optimization of free space optics parameters: An optimum solution for bad weather conditions. International Journal for Light and Electron Optics,124(19), 3969–3973.

    Google Scholar 

  20. Kumar, N., Sharma, A. K., & Kapoor, V. (2011). Performance evaluation of free space optics communication system in the presence of forward error correction techniques. Journal of Optics Community,32, 243–245.

    Google Scholar 

  21. Ghassemlooy, Z., Perez, J., & Leitgeb, E. (2013). On the performance of FSO communications links under sandstorm conditions. In Proceedings of the 12th international conference on telecommunications, Zaagreb, Croatie (pp 53–58).

  22. Zhong, H., Zhou, J., Du, Z., & Xie, L. (2018). A laboratory experimental study on laser attenuation by dust/sand storm. Journal of Aerosol Science,121, 31–37.

    Google Scholar 

  23. Esmail, M. A., Rghab, A. M., Fathallah, H. A., Altamimi, M., & Alshebeili, S. A. (2019). 5G-28 GHz signal transmission over hybrid all-optical FSO/RF links in dusty weather conditions. IEEE Access,7, 24404–24410.

    Google Scholar 

  24. Esmail, M. A., Fathallah, H. A., & Alouni, M. S. (2016) Effect of dust storms on FSO communications links. In 4th International conference on control engineering & information technology.

  25. Ali, M. A. A., Baqi, Z. H., & Rahi, S. Kh. (2019). On the performance of free space optical communication link over dust environment. In 2nd International conference on materials engineering and science(in press).

  26. Andrews, L. C. (2005). Free-space laser propagation: Atmospheric effects. IEEE Journal,19(5), 6–8.

    Google Scholar 

  27. Bouchet, O., & Sizun, H. (2006). Free-space optics propagation and communication. Arlington: ISTE Ltd.

    Google Scholar 

  28. Chan, V. W. (2006). Free-space optical communications. Journal of Lightwave Technology,24(12), 4750–4762.

    Google Scholar 

  29. Hemmati, H. (2005). Deep space optical communications. Pasadena: NASA, California Institute of Technology.

    Google Scholar 

  30. Esmail, M., Fathallah, H., & Alouni, M. S. (2016). An experimental study of FSO Link performance in desert environment. IEEE Communications Letter,99, 1–4.

    Google Scholar 

  31. Shao, Y. (2008). Physics and modeling of wind erosion (2nd ed., Vol. 37). Berlin: Springer.

    Google Scholar 

  32. Baddock, M. C., Strong, C. L., et al. (2014). A visibility and total suspended dust relationship. Atmospheric Environment Journal,89, 329–336.

    Google Scholar 

  33. Bloom, S., Korevaar, E., Schuster, J., & Willebrand, H. (2003). Understanding the performance of free-space optics. Journal of Optical Networking,2(6), 178–200.

    Google Scholar 

  34. Ghassemlooy, Z., Popoola, W., & Rajbhandari, S. (2019). Optical wireless communications: System and channel modelling with Matlab (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  35. Giuliano, G. (2019) Underwater optical communication systems. Ph. D thesis, University of Glasgow.

  36. Ali, M. A. A. (2015). Comparison of modulation techniques for underwater optical wireless communication employing APD receivers. Research Journal of Applied Sciences, Engineering and Technology,10(6), 707–715.

    Google Scholar 

  37. Ali, M. A. A. (2013). Analyzing of short range underwater optical wireless communications link. International Journal of Electronics & Communication Technology (IJECT),4(3), 125–132.

    Google Scholar 

  38. Yong, H. G., Ying, C. C., & Qiang, C. Z. (2007). Free-space optical wireless communication using visible light. Journal of Zhejiang University Science A,8(2), 186–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazin Ali A. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A. Ali, M.A., Shaker, F.K. & Kadhum, H.A. Investigation and Analysis of Data Rate for Free Space Optical Communications System Under Dust Conditions. Wireless Pers Commun 113, 2327–2338 (2020). https://doi.org/10.1007/s11277-020-07328-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07328-9

Keywords

Navigation