Skip to main content
Log in

Fractional S-Transform and Its Properties: A Comprehensive Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In time–frequency analysis, generalization of S-transform (ST) is known as fractional S-transform. Recently, fractional S-transform (FrST) has played an important role in the area of signal and image processing. The ST is a hybrid of wavelet, and short time Fourier transform. In this paper, the definition, properties and applications areas of ST and FrST are focused. The aim of this survey is to study ST and FrST, formats, properties, applications, and open issues to encourage further research in the fields of digital signal processing (DSP) and other applications area of engineering. In this article, firstly the several transforms that are related to ST as well as FrST are described and in the second part, comprehensive and exhaustive facts on the use of S-transform reviews and FrST in the area of DSP are enlightened. This transform technique is used for detection of LFM signal in the presence of echo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheng, X., Zhang, Y., Pham, D., & Lambare, G. (2005). Antileakage Fourier transform for seismic data regularization. Geophysics,70(4), V87–V95.

    Google Scholar 

  2. Cagatay, C., Kutay, M. A., & Ozaktas, H. M. (2000). The discrete fractional Fourier transform. IEEE Transactions on Signal Processing,48(5), 1329–1337.

    MathSciNet  MATH  Google Scholar 

  3. Pei, S. C., & Yeh, M. H. (1998). Two dimensional discrete fractional Fourier transform. Signal Processing,67(1), 99–108.

    MATH  Google Scholar 

  4. Aharoni, A., Vos, C. H. R., Verhoeven, H. A., Maliepaard, C. A., Kruppa, G., et al. (2002). Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS: A Journal of Integrative Biology,6(3), 217–234.

    Google Scholar 

  5. Wang, S. (2007). Applications of Fourier transform to imaging analysis. Journal of the Royal Statistical Society, 171, 1–11.

    Google Scholar 

  6. Cheddad, A., Joan, C., Kevin, C., & Paul, M. K. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing,90(3), 727–752.

    MATH  Google Scholar 

  7. Li, W., Zhang, D., & Xu, Z. (2002). Palam identification by Fourier transform. International Journal of Pattern Recognition and Artificial Intelligence,16(4), 417–432.

    Google Scholar 

  8. Carbonaro, M., Paola, M., Paolo, D., & Alessandro, N. (2008). Application of Fourier transform infrared spectroscopy to legume seed flour analysis. Food Chemistry,108(1), 361–368.

    Google Scholar 

  9. Sahu, R. K., & Mordechai, S. (2005). Fourier transform infrared spectroscopy in cancer detection. 1(5), 635–647.

  10. Rohman, A., & Man, Y. B. C. (2009). Analysis of cod-liver oil adulteration using Fourier transform infrared (FTIR) spectroscopy. Journal of the American Oil Chemists Society,86(12), 1149.

    Google Scholar 

  11. Gazi, E., Dwyer, J., Gardner, P., Siahkali, A. G., Wade, A. P., et al. (2013). Applications of Fourier transform infrared micro spectroscopy in studies of benign prostate and prostate cancer. A pilot study. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland,201(1), 99–108.

    Google Scholar 

  12. Krishna, C. M., Kegelaer, G., Adt, I., Rubin, S., Kartha, V. B., Michel, M., et al. (2006). Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines. Biopolymers: Original Research on Biomolecules,82(5), 462–470.

    Google Scholar 

  13. Su, X., & Chen, W. (2001). Fourier transform profilometry: A review. Optics and Lasers in Engineering,35(5), 263–284.

    Google Scholar 

  14. Vurpillot, F., Geuser, F. D., Costa, G. D., & Blavette, D. (2004). Application of Fourier transform and autocorrelation to cluster identification in the three-dimensional atom probe. Journal of Microscopy,216(3), 234–240.

    MathSciNet  Google Scholar 

  15. Sun, H. B., Liu, G. S., Gu, H., & Su, W. M. (2002). Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Transactions on Aerospace and Electronic Systems,38(4), 1416–1424.

    Google Scholar 

  16. Kutay, A., Ozaktas, H. M., Ankan, O., & Onural, L. (1997). Optimal filtering in fractional Fourier domains. IEEE Transactions on Signal Processing,45(5), 1129–1143.

    Google Scholar 

  17. Sejdic, E., Djurovic, I., & Stankovic, L. (2011). Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Processing,91(6), 1351–1369.

    MATH  Google Scholar 

  18. Liu, Z., Li, S., Liu, W., Wang, Y., & Liu, S. (2013). Image encryption algorithm by using fractional Fourier transform and pixel scrambling operation based on double random phase encoding. Optics and Lasers in Engineering,51(1), 8–14.

    Google Scholar 

  19. Jindal, N., & Singh, K. (2010). Image encryption using discrete fractional transforms. In 2010 International conference on advances in recent technologies in communication and computing (pp. 165–167).

  20. Prasad, A., Kumar, M., & Choudhury, D. R. (2012). Color image encoding using fractional Fourier transformation associated with wavelet transformation. Optics Communications,285(6), 1005–1009.

    Google Scholar 

  21. Martone, M. (2001). A multicarrier system based on the fractional Fourier transform for time–frequency-selective channels. IEEE Transactions on Communications,49(6), 1011–1020.

    MATH  Google Scholar 

  22. Tao, R., Li, Y. L., & Wang, Y. (2010). Short-time fractional Fourier transform and its applications. IEEE Transactions on Signal Processing,58(5), 2568–2580.

    MathSciNet  MATH  Google Scholar 

  23. Allen, J. B., & Rabiner, L. R. (1977). A unified approach to short-time Fourier analysis and synthesis. Proceedings of the IEEE,65(11), 1558–1564.

    Google Scholar 

  24. Bartosch, T., & Seidl, D. (1999). Spectrogram analysis of selected tremor signals using short-time Fourier transform and continuous wavelet transform. Annali di Geofisica,42(3), 497–506.

    Google Scholar 

  25. Hong, J. C., Sun, K. H., & Kim, Y. Y. (2005). Dispersion-based short-time Fourier transform applied to dispersive wave analysis. The Journal of the Acoustical Society of America,117(5), 2949–2960.

    Google Scholar 

  26. Mendlovic, D., Zalevsky, Z., David, M. D., García, J., & Ferreira, C. (1997). Fractional wavelet transform. Applied Optics,36(20), 4801–4806.

    Google Scholar 

  27. Shi, J., Xiaoping Liu, X., & Zhang, N. (2015). Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform. Signal, Image and Video Processing,9(1), 211–220.

    Google Scholar 

  28. Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing,9(9), 1532–1546.

    MathSciNet  MATH  Google Scholar 

  29. Barni, M., Bartolini, F., & Piva, A. (2001). Improved wavelet-based watermarking through pixel-wise masking. IEEE Transactions on Image Processing,10(5), 783–791.

    MATH  Google Scholar 

  30. Kabir, M. A., & Shahnaz, C. (2012). Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomedical Signal Processing and Control,7(5), 481–489.

    Google Scholar 

  31. Unser, M., Aldroubi, A., & Laine, A. F. (2003). Guest editorial: wavelets in medical imaging. IEEE Transactions on Medical Imaging,22, 285–288.

    Google Scholar 

  32. Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2011). Application of wavelet analysis in EMG feature extraction for pattern classification. Measurement Science Review,11(2), 45–52.

    Google Scholar 

  33. Ovanesova, A. V., & Suarez, L. E. (2004). Applications of wavelet transforms to damage detection in frame structures. Engineering Structures,26(1), 39–49.

    Google Scholar 

  34. Prasad, A., & Kumar, P. (2015). Fractional wavelet transform in terms of fractional convolution. Progress in Fractional Differentiation,1, 201–210.

    Google Scholar 

  35. Shi, J., Zhang, N. T., & Liu, X. P. (2012). A novel fractional wavelet transform and its applications. Science China Information Sciences,55(6), 1270–1279.

    MathSciNet  MATH  Google Scholar 

  36. Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing,44(4), 998–1001.

    Google Scholar 

  37. Adams, M. D., Kossentini, F., & Ward, R. K. (2002). Generalized S -transform. IEEE Transactions on Signal Processing,50(11), 2831–2842.

    MathSciNet  MATH  Google Scholar 

  38. Dehghani, M. J. (2009). Comparison of S-transform and wavelet transform in power quality analysis. World Academy of Science, Engineering and Technology,50(4), 395–398.

    Google Scholar 

  39. Ranjan, R., Singh, A. K., & Jindal, N. (2018). Formulation of some useful theorems for S-transform. Optik,168, 913–919.

    Google Scholar 

  40. Aldas, G. U. (2005). Application of the Stockwell transform to blasting-induced ground vibration. International Journal of Surface Mining, Reclamation, and Environment,19(2), 100–107.

    Google Scholar 

  41. Sejdic, E., Stankovic, L., Dakovic, M., & Jin Jiang, J. (2008). Instantaneous frequency estimation using the S-transform. IEEE Signal Processing Letters,15, 309–312.

    Google Scholar 

  42. Qiang, G., Molahajloo, S., & Wong, M. W. (2010). Phases of modified Stockwell transforms and instantaneous frequencies. Journal of Mathematical Physics,51(5), 052101.

    MathSciNet  MATH  Google Scholar 

  43. Wang, L., & Xiaofeng, M. (2011). An adaptive generalized S-transform for instantaneous frequency estimation. Signal Processing,91(8), 1876–1886.

    MATH  Google Scholar 

  44. Ali, M., Bouguila, Z., Abdeslam, D. O., & Dieterlen, A. (2015). A new optimized Stockwell transform applied on synthetic and real non-stationary signals. Digital Signal Processing,46, 226–238.

    MathSciNet  Google Scholar 

  45. Hindley, N. P., Smith, N. D., Wright, C. J., Rees, D. A. S., & Mitchell, N. J. (2016). A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements. Atmospheric Measurement Techniques,9(6), 2545–2565.

    Google Scholar 

  46. Huang, Z., Zhang, J., ZhaoZhao, T., & Sun, Y. (2016). Synchrosqueezing S-transform and its application in seismic spectral decomposition. IEEE Transactions on Geoscience and Remote Sensing,54(2), 2817–2825.

    Google Scholar 

  47. Fei, S., Xue, X., Sun, J., Wang, J., & Zhang, Y. (2016). A SAR image despeckling method based on two-dimensional S-transform shrinkage. IEEE Transactions on Geoscience and Remote Sensing,54(5), 3025–3034.

    Google Scholar 

  48. Ghaffarzadeh, H. (2016). A classification method for pulse-like ground motions based on S-transform. Natural Hazards,84(1), 335–350.

    Google Scholar 

  49. Mansinha, L., Stockwell, R. G., & Lowe, R. P. (1997). Pattern analysis with two-dimensional spectral localization: Applications of two-dimensional S-transforms. Physica A: Statistical Mechanics and its Applications,239(1–3), 286–295.

    Google Scholar 

  50. Pinnegar, C. R., & Eaton, D. W. (2003). Application of the S -transform to prestack noise attenuation filtering. Journal of Geophysical Research: Solid Earth, 108(B9).

  51. Schimmel, M., & Gallart, J. (2005). The inverse S-transform in filters with time–frequency localization. IEEE Transactions on Signal Processing,53(11), 4417–4422.

    MathSciNet  MATH  Google Scholar 

  52. Stockwell, R. G. (2007). A basis for efficient representation of the S-transform. Digital Signal Processing,17(1), 371–393.

    Google Scholar 

  53. Pei, S. C., & Wang, P. W. (2007). Modified inverse S -transform for filtering in time–frequency spectrum. In 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP’07 (Vol. 3, pp. III–1169).

  54. Assous, S., & Boashash, B. (2012). Evaluation of the modified S-transform for time–frequency synchrony analysis and source localization. EURASIP Journal on Advances in Signal Processing,2012(1), 49.

    Google Scholar 

  55. Singh, S. K. (2012). The S -transform on spaces of type S. Integral Transforms and Special Functions,23(7–8), 481–494.

    MathSciNet  MATH  Google Scholar 

  56. Singh, S. K. (2012). The S-transform on spaces of type W. Integral Transforms and Special Functions,23(12), 891–899.

    MathSciNet  MATH  Google Scholar 

  57. Hutníková, M. (2013). On the range of Stockwell transforms. Applied Mathematics and Computation,219(17), 8904–8909.

    MathSciNet  MATH  Google Scholar 

  58. Ditommaso, R., Ponzo, F. C., & Auletta, G. (2015). Damage detection on framed structures: modal curvature evaluation using Stockwell transform under seismic excitation. Earthquake Engineering and Engineering Vibration,14(2), 265–274.

    Google Scholar 

  59. Battisti, U., & Riba, L. (2016). Window-dependent bases for efficient representations of the Stockwell transform. Applied and Computational Harmonic Analysis,40(2), 292–320.

    MathSciNet  MATH  Google Scholar 

  60. Zhao, Z., Wang, S., Zhang, W., & Xie, Y. (2016). A novel automatic modulation classification method based on Stockwell-transform and energy entropy for underwater acoustic signals. In 2016 IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–6).

  61. Hamidia, M., & Amrouche, A. (2017). A new robust double-talk detector based on the Stockwell transform for acoustic echo cancellation. Digital Signal Processing,60(2017), 99–112.

    Google Scholar 

  62. Yin, B., Sun, Z., Yi, Z., & He, Y. (2017). A novel local transform inverse S-transform algorithm for statistical filter. IOP Conference Series: Materials Science and Engineering,242(1), 012118.

    Google Scholar 

  63. Bender, C. (2003). An S-transform approach to integration with respect to a fractional Brownian motion. Bernoulli,9(6), 955–983.

    MathSciNet  MATH  Google Scholar 

  64. Saraç, Z. (2008). Analysis of white-light interferograms by using Stockwell transform. Optics and Lasers in Engineering,46(11), 823–828.

    Google Scholar 

  65. Weishi, M., & Jinghuai, G. (2009). Statistical denoising of signals in the S-transform domain. Computers & Geosciences,35(6), 1079–1086.

    Google Scholar 

  66. Zidelmal, Z., Hamil, H., Moukadem, A., Amirou, A., & Abdeslam, D. Q. (2017). S-transform based on compact support kernel. Digital Signal Processing,62, 137–149.

    Google Scholar 

  67. Sahoo, B. C., Thomas, O., Misra, D., & Newby, G. (2007). Using the one-dimensional S-transform as a discrimination tool in classification of hyperspectral images. Canadian Journal of Remote Sensing,33(6), 551–560.

    Google Scholar 

  68. Drabycz, S. D., Stockwell, R. G., & Mitchell, J. R. (2009). Image texture characterization using the discrete orthonormal S-transform. Journal of Digital Imaging,22(6), 696.

    Google Scholar 

  69. Mohua, J., Chen, W., Zheng, Z., & Zhong, M. (2012). Fringe pattern analysis by S-transform. Optics Communications,285(3), 209–217.

    Google Scholar 

  70. Badrinath, G. S., & Gupta, P. (2011). Stockwell transform based palm-print recognition. Applied Soft Computing,11(7), 4267–4281.

    Google Scholar 

  71. Zhong, M., Chen, W., Su, X., Zheng, Y., & Shen, Q. (2013). Optical 3D shape measurement profilometry based on 2D S-transform filtering method. Optics Communications,300, 129–136.

    Google Scholar 

  72. Min, Z., Chen, W., Wang, T., & Su, X. (2013). Application of two-dimensional S -transform in fringe pattern analysis. Optics and Lasers in Engineering,51(10), 1138–1142.

    Google Scholar 

  73. Qiuju, S., Chen, W., Zhong, M., & Su, X. (2014). An improving fringe analysis method based on the accuracy of S-transform profilometry. Optics Communications,322, 8–15.

    Google Scholar 

  74. Dash, K. S., Puhan, N. B., & Panda, G. (2014). Non-redundant Stockwell transform based feature extraction for handwritten digit recognition. In 2014 international conference on signal processing and communications (SPCOM) (pp. 1–4).

  75. Shahla, S., & Charkari, N. M. (2014). Palm print authentication based on discrete orthonormal S -transform. Applied Soft Computing,21, 341–351.

    Google Scholar 

  76. Kumar, M., & Agrawal, S. (2015). Color image encoding in DOST domain using DWT and SVD. Optics & Laser Technology,75, 138–145.

    Google Scholar 

  77. Nithya, B., Sankari, Y. B., Manikantan, K., & Ramachandran, S. (2015). Discrete orthonormal Stockwell transform based feature extraction for pose-invariant face recognition. Procedia Computer Science,45, 290–299.

    Google Scholar 

  78. Kumar, M., & Vaish, A. (2017). Encryption of color images using MSVD in DCST domain. Optics and Lasers in Engineering,88, 51–59.

    Google Scholar 

  79. Wang, Y., & Orchard, J. (2008). Symmetric discrete orthonormal Stockwell transform. AIP Conference Proceedings,1048(1), 585–588.

    Google Scholar 

  80. Wang, Y., & Orchard, J. (2009). Fast discrete orthonormal Stockwell transform. SIAM Journal on Scientific Computing,31(5), 4000–4012.

    MathSciNet  MATH  Google Scholar 

  81. Wang, Y., & Orchard, J. (2009). On the use of the Stockwell transform for image compression. In Image processing: Algorithms and systems VII (Vol. 7245, p. 724504). International Society for Optics and Photonics.

  82. Wang, Y., & Orchard, J. (2009). The discrete orthonormal Stockwell transform for image restoration. In 2009 16th IEEE international conference on image processing (ICIP) (pp. 2761–2764).

  83. Das, M. K., & Ari, S. (2013). Analysis of ECG signal denoising method based on S-transform. Irbm,34(6), 362–370.

    Google Scholar 

  84. Ari, S., Das, M. K., & Chacko, A. (2013). ECG signal enhancement using S-transform. Computers in Biology and Medicine,43(6), 649–660.

    Google Scholar 

  85. Agrawal, J. P., & Vijay, R. (2013). Time–frequency filtering with the S-transform of ECG signals. International Journal of Scientific and Research Publications,3(2), 1–5.

    Google Scholar 

  86. Zahia, Z., Amirou, A., Abdeslam, D. Q., Moukadem, A., & Dieterlen, A. (2014). QRS detection using S-transform and Shannon energy. Computer Methods and Programs in Biomedicine,116(1), 1–9.

    Google Scholar 

  87. Hariharan, M., Vijean, V., Sindhu, R., Divakar, P., Saidatul, A., & Yaacob, S. (2014). Classification of mental tasks using Stockwell transform. Computers & Electrical Engineering,40(5), 1741–1749.

    Google Scholar 

  88. Yusof, Y. W. M., & Saparon, A. (2015). Performance comparison of discrete orthonormal S-transform for the reconstruction of medical images. In 2015 IEEE European modelling symposium (EMS) (pp. 128–132).

  89. Raj, S., Ray, K. C., & Om Shankar, O. (2016). Cardiac arrhythmia beat classification using DOST and PSO tuned SVM. Computer Methods and Programs in Biomedicine,136, 163–177.

    Google Scholar 

  90. Vikneswaran, V., Hariharan, M., & Mansor, M. N (2016). Analysing selected visual anomaly through ST-based multi-resolution VEP decomposition. In 2016 IEEE 12th international colloquium on signal processing & its applications (CSPA) (pp. 64–67).

  91. Raj, S., & Ray, K. C. (2017). ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Transactions on Instrumentation and Measurement,66(3), 470–478.

    Google Scholar 

  92. Mario, O., Ugarte, M. R., Ianez, E., & Azorín, J. M. (2017). Application of the Stockwell transform to electroencephalographic signal analysis during gait cycle. Frontiers in Neuroscience,11, 660.

    Google Scholar 

  93. Alan, P. V., Beltran, C. G., Sibaja, A. M., & Gómez, R. P. (2018). Use of the Stockwell transform in the detection of P300 evoked potentials with low-cost brain sensors. Sensors,18(5), 1483.

    Google Scholar 

  94. Xianyong, X., Xu, F., & Yang, H. (2009). Short duration disturbance classifying based on S-transform maximum similarity. International Journal of Electrical Power & Energy Systems,31(7), 374–378.

    Google Scholar 

  95. Sekhar, B. H., Dash, P. K., & Biswal, B. (2010). Power quality time series data mining using S-transform and fuzzy expert system. Applied Soft Computing,10(3), 945–955.

    Google Scholar 

  96. Bing, L., Zhang, P. L., Liu, D. S., Mi, S. S., Ren, G. Q., & Tian, H. (2011). Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. Journal of Sound and Vibration,330(10), 2388–2399.

    Google Scholar 

  97. Murat, U., Yildirim, S., & Gencoglu, M. T. (2009). An expert system based on S-transform and neural network for automatic classification of power quality disturbances. Expert Systems with Applications,36(3), 5962–5975.

    Google Scholar 

  98. Roy, N., & Bhattacharya, K. (2013). Identification and classification of fault in an EHV transmission line using S-transform and neural network. International Journal of Electrical, Electronics and Computer Engineering,2(2), 80–87.

    Google Scholar 

  99. Yulieth, J., Duarte, C., Petit, J., & Carrillo, G. (2014). Feature extraction for nonintrusive load monitoring based on S -transform. In 2014 Clemson university power systems conference (pp. 1–5).

  100. Borin, V. P., Barriquello, C. H., & Campos, A. (2015). Approach for home appliance recognition using vector projection length and Stockwell transform. Electronics Letters,51(24), 2035–2037.

    Google Scholar 

  101. Singh, S. K., & Kalita, B. (2015). The S-transform on Hardy spaces and its duals. International Journal of Analysis and Applications,7(2), 171–178.

    MATH  Google Scholar 

  102. Kunjin, C., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines and distribution systems: A review on the methods. High Voltage,1(1), 25–33.

    Google Scholar 

  103. Pujiantara, M., Okky Anggriawan, D., Tjahjono, A., Priyadi, A., & Hery Purnomo, M. (2017). Real-time power quality analysis for industrial power systems based on Fast S-Transform. International Review of Electrical Engineering (IREE), 12(3), 277. https://doi.org/10.15866/iree.v12i3.11947.

    Article  Google Scholar 

  104. Reddy, M. J. B., Gopakumar, P., & Mohanta, D. K. (2016). A novel transmission line protection using DOST and SVM. Engineering Science and Technology, an International Journal,19(2), 1027–1039.

    Google Scholar 

  105. Shuqing, Z., Li, P., Zhang, L., Li, H., Jiang, W., & Hu, Y. (2016). Modified S -transform and ELM algorithms and their applications in power quality analysis. Neurocomputing,185, 231–241.

    Google Scholar 

  106. Mahela, O. P., & Shaik, A. G. (2017). Power quality recognition in distribution system with solar energy penetration using S-transform and fuzzy C-means clustering. Renewable Energy,106, 37–51.

    Google Scholar 

  107. Ranjan, R., Jindal, N., & Singh, A. K. (2019). A sampling theorem with error estimation for S-transform. Integral Transforms and Special Functions,30, 1–21.

    MathSciNet  MATH  Google Scholar 

  108. Chang, P. S., Wang, P. W., Ding, J. J., & Wen, C. C. (2011). Elimination of the discretization side-effect in the S-transform using folded windows. Signal Processing,91(6), 1466–1475.

    MATH  Google Scholar 

  109. Ma, J., & Li, Q. (2011). Surface wave suppression with joint S transform and TT transform. Procedia Earth and Planetary Science,3, 246–252.

    Google Scholar 

  110. Kumar, A., Srikanth, P., & Naik, K. A. (2011). Identification of power quality events using inverse properties of S transform. In 2011 IEEE/PES power systems conference and exposition (pp. 1–7).

  111. Yanghong, T., Sun, Y., & Yin, X. (2013). Analog fault diagnosis using S-transform pre-processor and a QNN classifier. Measurement,46(7), 2174–2183.

    Google Scholar 

  112. Pedro, S., Montoya, F. G., Agugliaro, F. M., & Gil, C. (2013). Genetic algorithm for S-transform optimisation in the analysis and classification of electrical signal perturbations. Expert Systems with Applications,40(17), 6766–6777.

    Google Scholar 

  113. Ahmed, A., Zidelmal, Z. A., Aidene, M. & Merckle, J. (2014). Using S-transform and Shannon energy for electrical disturbances detection. In IECON 2014-40th annual conference of the IEEE industrial electronics society (pp. 2452–2457).

  114. Kumar, R., Singh, B., Shahani, D. T., Chandra, A., & Haddad, K. A. (2015). Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree. IEEE Transactions on Industry Applications,51(2), 1249–1258.

    Google Scholar 

  115. Ping, X. D., & Guo, K. (2012). Fractional S transform—Part 1: Theory. Applied Geophysics,9(1), 73–79.

    Google Scholar 

  116. Singh, S. K. (2013). The fractional S-transform on spaces of type W. Journal of Pseudo-Differential Operators and Applications,4(2), 251–265.

    MathSciNet  MATH  Google Scholar 

  117. Singh, S. K. (2013). The fractional S-transform on spaces of type S. Journal of Mathematics,2013, 1–9.

    MathSciNet  Google Scholar 

  118. Singh, A. (2015). Fractional S-transform for Boehmians. Journal of Analysis & Number Theory,3(2), 103–108.

    Google Scholar 

  119. Cong, D. Z., Xu, D. P., & Zhang, J. M. (2016). Fractional S-transform-part 2: Application to reservoir prediction and fluid identification. Applied Geophysics,13(2), 343–352.

    Google Scholar 

  120. Wang, Y., & Zhenming, P. (2016). The optimal fractional S transform of the seismic signal based on the normalized second-order central moment. Journal of Applied Geophysics,129, 8–16.

    Google Scholar 

  121. Junbo, L., Wang, H., Zha, D., Li, P., Xie, H., & Mao, L. (2017). Applications of fractional lower order S transform time–frequency filtering algorithm to machine fault diagnosis. PLoS ONE,12(4), e0175202.

    Google Scholar 

  122. Sifuzzaman, M., Islam, M. R., & Ali, M. Z. (2009). Application of wavelet transform and its advantages compared to Fourier transform. Journal of Physical Sciences,13, 121–134.

    Google Scholar 

  123. Gaunaurd, G. C., & Strifors, H. C. (2003). Applications of (Wigner-type) time–frequency distributions to sonar and radar signal analysis. arXiv preprint physics/0309050.

  124. Umapathy, K., Ghoraani, B., & Krishnan, S. (2010). Audio signal processing using time–frequency approaches coding, classification, fingerprinting, and watermarking. EURASIP Journal on Advances in Signal Processing,2010, 1.

    MATH  Google Scholar 

  125. Cohen, L. (1989). Time–frequency distributions-a review. Proceedings of the IEEE,77(7), 941–981.

    Google Scholar 

  126. Shafi, I., Ahmad, J., Shah, S. I., Ikram, A. A., Khan, A. A., et al. (2014). High-resolution time–frequency methods performance analysis. EURASIP Journal on Advances in Signal Processing,2010, 14.

    Google Scholar 

  127. Stanković, S. (2010). Time–frequency analysis and its application in digital watermarking. EURASIP Journal on Advances in Signal Processing,2010(1), 579295.

    MATH  Google Scholar 

  128. Blain, G. M., Meste, O., Blain, A., & Bermon, S. (2009). Time–frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology,296, H1651–H1659.

    Google Scholar 

  129. Cerutti, S. (2013). On time–frequency techniques in biomedical signal analysis. Methods of Information in Medicine,52(04), 277–278.

    Google Scholar 

  130. Ranjan, R., Jindal, N., & Singh, A. K. (2019). Convolution theorem with its derivatives and multiresolution analysis for fractional S-transform. Circuits, Systems, and Signal Processing,38, 1–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Jindal, N. & Singh, A.K. Fractional S-Transform and Its Properties: A Comprehensive Survey. Wireless Pers Commun 113, 2519–2541 (2020). https://doi.org/10.1007/s11277-020-07339-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07339-6

Keywords

Navigation