Skip to main content

Advertisement

Log in

An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is a newly emerging term for the new generation of the Internet which allows understanding between interconnected devices. IoT acts as an assistant in healthcare and plays an extremely important role in wide scopes of medicinal services observing applications. Through determining the pattern of parameters that are observed, the character of the disease can be expected. Health specialists and technicians have developed a great system with low-cost healthcare monitoring for people suffering from many diseases using common techniques such as wearable devices, wireless channels, and other remote devices. Network-related sensors, either worn on the body or in living environments, collect rich information to assess the physical and mental state of the patient. This work focuses on scanning the existing e-health (electronic healthcare) monitoring system using integrated systems. The main goal of the e-health monitoring system is to offer the patient a prescription automatically according to his or her condition. The doctor can check patient health continuously without physical interaction. The study aims to explore the uses of IoT applications in the medical sector, and its role in raising the level of medical care services in health institutions. Also, the study will address the applications of IoT in the medical field and the extent of its use to enrich traditional methods in various health fields and to determine the extent of the ability of IoT to improve the quality of health services provided. The study relies on a descriptive research approach through an analysis of the literature published in this field. The results of the study refer to the application of IoT in the health institutions, it will help to obtain accurate diagnoses for patients, which will reflect on the quality of service provided to the patient. It will also reduce periodic patient reviews to the hospital by relying on IoT applications for remote diagnosis. Also, an application in health institutions will contribute to providing data correct for the diseases that patients suffer from, and hence employing them in preparing scientific research to obtain more accurate results. This paper introduces the review of the Internet-based healthcare monitoring system (HCMS) and the general outlines on opportunities and challenges of the patient’s Internet-based patient health monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donzia, S. K. Y., Kim, H. K., & Shin, B. Y. (2018, November). Study on cloud computing and emergence of the Internet of the Thing in industry. In 2018 5th NAFOSTED conference on information and computer science (NICS) (pp. 334–337). IEEE.‏

  2. Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for smart cities. IEEE Internet Things J., 1(1), 22–32.

    Google Scholar 

  3. Sanchez, L., et al. (2014). Smartsantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.

    Google Scholar 

  4. Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive approaches to user acceptance of Internet of Things in a smart home environment. IEEE Internet Things Journal, 4(6), 2342–2350.

    Google Scholar 

  5. Vishwakarma, S. K., Upadhyaya, P., Kumari, B., & Mishra, A. K. (2019, April). Smart energy efficient home automation system using IoT. In 2019 4th international conference on internet of things: Smart innovation and usages (IoT-SIU) (pp. 1–4). IEEE.‏

  6. Husni, E., et al. (2016). Applied Internet of Things (IoT): Car monitoring system using IBM BlueMix. In Proceedings of international seminar intelligence technology application (ISITIA), July 2016 (pp. 417–422).

  7. Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE Communications Magazine, 55(9), 26–33.

    Google Scholar 

  8. Sastra, N. P., & Wiharta, D. M. (2016). Environmental monitoring as an IoT application in building smart campus of Universitas Udayana. In Proceedings of international conference on smart-green technology in electrical and information systems (ICSGTEIS), October 2016 (pp. 85–88).

  9. Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K.-S. (2015). The Internet of Things for health care: A comprehensive survey. IEEE Access, 3, 678–708.

    Google Scholar 

  10. Li, L. (2011). Application of the Internet of Thing in green agricultural products supply chain management. In Proceedings of IEEE international conference on computation technology and automation (ICICTA) (Vol. 1, pp. 1022–1025). Shenzhen, China.

  11. IERC. (March, 2015). European research cluster on the Internet of Things-outlook of IoT activities in Europe. Retrieved September 20, 2017 from http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Semantic_Interoperability_Final.pdf.

  12. Brown, E. (2016). Who needs the Internet of Things?. Linux.com. September 13, 2016.

  13. Della Mea, V. (2001). What is e-Health (2): The death of telemedicine? Journal of Medical Internet Research, 3, e22.

    Google Scholar 

  14. Fan, Y. J., Yin, Y. H., Xu, L. D., Zeng, Y., & Wu, F. (2014). IoT-based smart rehabilitation system. IEEE Transactions on Industrial Informatics, 10, 1568–1577.

    Google Scholar 

  15. Yuehong, Y. I. N., Zeng, Y., Chen, X., & Fan, Y. (2016). Internet of things in healthcare: An overview. Journal of Industrial Information Integration, 1, 3–13.

    Google Scholar 

  16. Bardram, J. E., Doryab, A., Jensen, R. M., Lange, P. M., Nielsen, K. L., & Petersen, S.T. (2011). Phaserecognition during surgical procedures using embedded and body-worn sensors. In: IEEE international conference on pervasive computing and communications (PerCom), March 45–53, 2011.

  17. Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A., Sabino, M. H., Prince, R. M., Al-Muhtadi, J., et al. (2018). Enabling technologies for the Internet of health things. IEEE Access, 6, 13129–13141.

    Google Scholar 

  18. Nanayakkara, N., Halgamuge, M., & Syed, A. (2019). Security and privacy of Internet of Medical Things (IoMT) based healthcare applications: A review.‏

  19. Selvaraj, S., & Sundaravaradhan, S. (2020). Challenges and opportunities in IoT healthcare systems: A systematic review. SN Applied Sciences, 2(1), 139.

    Google Scholar 

  20. Nazir, S., Ali, Y., Ullah, N., & García-Magariño, I. (2019). Internet of Things for Healthcare using effects of mobile computing: A systematic literature review. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/5931315.

    Article  Google Scholar 

  21. Chacko, A., & Hayajneh, T. (2018). Security and privacy issues with IoT in healthcare. EAI Endorsed Transactions on Pervasive Health and Technology. https://doi.org/10.4108/eai.13-7-2018.155079.

    Article  Google Scholar 

  22. Nugraha, A. T., Wibowo, R., Suryanegara, M., & Hayati, N. (2018, September). An IoT-LoRa system for tracking a patient with a mental disorder: Correlation between battery capacity and speed of movement. In 2018 7th international conference on computer and communication engineering (ICCCE) (pp. 198–201). IEEE.‏

  23. Irawan, H. C., & Juhana, T. (2017, October). Heart rate monitoring using IoT wearable for ambulatory patient. In 2017 11th international conference on telecommunication systems services and applications (TSSA) (pp. 1–4). IEEE.‏

  24. Kumar, G. V., Bharadwaja, A., & Sai, N. N. (2017, May). Temperature and heart beat monitoring system using IOT. In 2017 international conference on trends in electronics and informatics (ICEI) (pp. 692–695). IEEE.‏

  25. Jiang, M., Gia, T. N., Anzanpour, A., Rahmani, A. M., Westerlund, T., Salanterä, S., et al. (2016, April). IoT-based remote facial expression monitoring system with sEMG signal. In 2016 IEEE sensors applications symposium (SAS) (pp. 1–6). IEEE.‏

  26. Karimian, N., Tehranipoor, M., Woodard, D., & Forte, D. (2019). Unlock your heart: Next generation biometric in resource-constrained healthcare systems and IoT. IEEE Access, 7, 49135–49149.

    Google Scholar 

  27. Internet of Things in Eye Diseases, Introducing a New Smart Eyeglasses Designed for Probable Dangerous Pressure Changes in Human Eyes.

  28. Malhotra, A., Som, S., & Khatri, S. K. (2019, February). IoT based predictive model for cloud seeding. In 2019 amity international conference on artificial intelligence (AICAI) (pp. 669–773). IEEE.‏

  29. Pulkkis, G., Karlsson, J., Westerlund, M., & Tana, J. (2017, August). Secure and reliable Internet of Things systems for healthcare. In 2017 IEEE 5th international conference on future internet of things and cloud (FiCloud) (pp. 169–176). IEEE.‏

  30. Ahmed, N., Rahman, H., & Hussain, M. I. (2016). A comparison of 802.11ah and 802.15.4 for IoT. ICT Express, 2(3), 100–102.

    Google Scholar 

  31. Li, M. (2019, July). Soft frequency reuse-based resource allocation for D2D communications using both licensed and unlicensed bands. In 2019 eleventh international conference on ubiquitous and future networks (ICUFN) (pp. 384–386). IEEE.‏

  32. Shobowale, Y. M., & Hamdi, K. A. (2009). A unified model for interference analysis in unlicensed frequency bands. IEEE Transactions on Wireless Communications, 8(8), 4004–4013.

    Google Scholar 

  33. Beyene, Y. D., et al. (2017). NB-IoT technology overview and experience from cloud-RAN implementation. IEEE Wireless Communication, 24(3), 26–32.

    MathSciNet  Google Scholar 

  34. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 19(2), 855–873.

    Google Scholar 

  35. Riazul Islam, S. M., Daehan Kwak, M. H. K. M. H., & Kwak, K. S. (2015). The Internet of Things for health care: A comprehensive survey. In IEEE access.

  36. Sinha, R. S., Wei, Y., & Hwang, S.-H. (2017). A survey on LPWA technology: LoRa and NB-IoT. ICT Express, 3(1), 14–21.

    Google Scholar 

  37. Rodriguez-Zurrunero, R., Utrilla, R., Rozas, A., & Araujo, A. (2019). Process management in IoT operating systems: Cross-influence between processing and communication tasks in end-devices. Sensors, 19(4), 805.

    Google Scholar 

  38. Xu, L. D., He, W., & Li, S. (2014). Internet of Things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Google Scholar 

  39. Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet Things Journal, 4(1), 1–20.

    Google Scholar 

  40. TongKe, F. (2013). Smart agriculture based on cloud computing and IoT. Journal of Convergence Information Technology, 8(2), 190–201.

    Google Scholar 

  41. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80.

    Google Scholar 

  42. Bendre, M. R., Thool, R. C., & Thool, V. R. (2015). Big data in precision agriculture: Weather forecasting for future farming. In Proceedings of 1st international conference on next generation computing technologies (NGCT), September 2015 (pp. 744–750).

  43. Yan-e, D. (2011). Design of intelligent agriculture management information system based on IoT. In International conference on intelligent computation technology and automation (Vol. 1, pp. 1045–1049). Shenzhen, China, March 2011.

  44. Chen, X., Shi, Q., Yang, L., & Xu, J. (2018). ThriftyEdge: Resource-efficient edge computing for intelligent IoT applications. IEEE Networks, 32(1), 61–65.

    Google Scholar 

  45. Premsankar, G., Francesco, M. D., & Taleb, T. (2018). Edge computing for the Internet of Things: A case study. IEEE Internet Things Journals, 5(2), 1275–1284.

    Google Scholar 

  46. Lakkis, S. I., & Elshakankiri, M. (2017, November). IoT based emergency and operational services in medical care systems. In 2017 Internet of Things business models, users, and networks (pp. 1–5). IEEE.‏

  47. Heydenreich, F., Jürgens, C., & Tost, F. (2009). Data security and the handling of patient data in home monitoring systems. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 106(9), 800–804.

    Google Scholar 

  48. Kliem, A., Boelke, A., Grohnert, A., & Traeder, N. (2014, October). Self-adaptive middleware for ubiquitous medical device integration. In 2014 IEEE 16th international conference on e-health networking, applications and services (Healthcom) (pp. 298–304). IEEE.‏

  49. Idrees, M., Iqbal, W., & Bazaz, S. A. (2013, December). Real-time doctor-patient assignment in a telemedicine system. In INMIC (pp. 55–60). IEEE.‏

  50. Scott, D., & Purves, I. N. (1996). Triadic relationship between doctor, computer and patient. Interacting with Computers, 8(4), 347–363.

    Google Scholar 

  51. Ferreira, J., Soares, J. N., Jardim-Goncalves, R., & Agostinho, C. (2017, May). Management of IoT devices in a physical network. In 2017 21st international conference on control systems and computer science (CSCS) (pp. 485–492). IEEE.‏

  52. Singh, B., Urooj, S., Mishra, S., & Haldar, S. (2019). Blood pressure monitoring system using wireless technologies. Procedia Computer Science, 152, 267–273.

    Google Scholar 

  53. Lavanya, S., Lavanya, G., & Divyabharathi, J. (2017, March). Remote prescription and I-Home healthcare based on IoT. In 2017 international conference on innovations in green energy and healthcare technologies (IGEHT) (pp. 1–3). IEEE.‏

  54. Hong, J., Morris, P., & Seo, J. (2017, August). Interconnected personal health record ecosystem using IoT cloud platform and HL7 FHIR. In 2017 IEEE international conference on healthcare informatics (ICHI) (pp. 362–367). IEEE.‏

  55. Pardeshi, V., Sagar, S., Murmurwar, S., & Hage, P. (2017, February). Health monitoring systems using IoT and raspberry pi—A review. In 2017 international conference on innovative mechanisms for industry applications (ICIMIA) (pp. 134–137). IEEE.‏

  56. Coomber, P., Clavarino, A., Ballard, E., & Luetsch, K. (2018). Doctor–pharmacist communication in hospitals: Strategies, perceptions, limitations and opportunities. International Journal of Clinical Pharmacy, 40(2), 464–473.

    Google Scholar 

  57. Kadhim, Kadhim Takleef, Alsahlany, Ali M., Wadi, Salim Muhsin, & Kadhum, Hussein T. (2020). Monitoring vital signs of human hear based on IOT. Al-Furat Journal of Innovations in Electronics and Computer Engineering, 1(2), 9–13.

    Google Scholar 

  58. Dimitrov, D. V. (2016). Medical internet of things and big data in healthcare. Healthcare Informatics Research, 22(3), 156–163.

    Google Scholar 

  59. Fernandes, P. M. P., & Werebe, E. (2010). Electronic medical files for patients: Some steps towards the future. São Paulo Medical Journal, 15(4), 159–161.

    Google Scholar 

  60. Kaur, K., & Kaur, K. (2017). A Survey on Service Oriented Architecture on Big Data, Cloud Computing and IOT. International Journal of Advanced Research in Computer Science8(3).‏

  61. Kumar, S., & Pandey, P. (2018, March). A smart healthcare monitoring system using smartphone interface. In 2018 4th international conference on devices, circuits and systems (ICDCS) (pp. 228–231). IEEE.‏

  62. Gaur, B., Shukla, V. K., & Verma, A. (2019, April). Strengthening people analytics through wearable IOT device for real-time data collection. In 2019 international conference on automation, computational and technology management (ICACTM) (pp. 555–560). IEEE.‏

  63. Hanada, E., & Kudou, T. (2018, May). Managing the electromagnetic environment of hospital IoT systems. In 2018 IEEE international symposium on electromagnetic compatibility and 2018 IEEE Asia-Pacific symposium on electromagnetic compatibility (EMC/APEMC) (pp. 940–943). IEEE.‏

  64. Mumtaj, S. Y., & Umamakeswari, A. (2017, August). Neuro fuzzy based healthcare system using IoT. In 2017 international conference on energy, communication, data analytics and soft computing (ICECDS) (pp. 2299–2303). IEEE.‏

  65. Izaddoost, A., & McGregor, C. (2016, October). Enhance network communications in a cloud-based real-time health analytics platform using SDN. In 2016 IEEE international conference on healthcare informatics (ICHI) (pp. 388–391). IEEE.‏

  66. Khan, A. U., Rahman, A., & Khan, N. (2016, August). Optimum placement of gateway node on human body for real-time healthcare monitoring using WBAN. In 2016 sixth international conference on innovative computing technology (INTECH) (pp. 408–412). IEEE.‏

  67. Tan, B., & Tian, O. (2014, March). Short paper: Using BSN for tele-health application in upper limb rehabilitation. In 2014 IEEE world forum on Internet of Things (WF-IoT) (pp. 169–170). IEEE.‏

  68. Divakaran, S., Manukonda, L., Sravya, N., Morais, M. M., & Janani, P. (2017, September). IOT clinic-Internet based patient monitoring and diagnosis system. In 2017 IEEE international conference on power, control, signals and instrumentation engineering (ICPCSI) (pp. 2858–2862). IEEE.‏

  69. Kadhim, K. T., Alsahlany, A. M., Wadi, S. M., & Kadhum, H. T. (2020). Monitor human vital signs based on IoT technology using MQTT protocol. In Proceedings of international conference on applied science and technology (ICAST), April, 2020.

  70. Sloane, E. B., & Gehlot, V. (2016, April). Improved population health surveillance and chronic disease management using secure email: Application of the DIRECT, IEEE 11073, HITSP, and IHE standards and protocols. In 2016 18th Mediterranean electrotechnical conference (MELECON) (pp. 1–3). IEEE.‏

  71. Kalyankar, G. D., Poojara, S. R., & Dharwadkar, N. V. (2017, February). Predictive analysis of diabetic patient data using machine learning and Hadoop. In 2017 international conference on I-SMAC (IoT in social, mobile, analytics and cloud) (I-SMAC) (pp. 619–624). IEEE.‏

  72. Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.

    Google Scholar 

  73. Muhammed, T., Mehmood, R., Albeshri, A., & Katib, I. (2018). UbeHealth: A personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access, 6, 32258–32285.

    Google Scholar 

  74. Alharam, A. K., & El-madany, W. (2017, August). Complexity of cyber security architecture for IoT Healthcare industry: A comparative study. In 2017 5th international conference on future internet of things and cloud workshops (FiCloudW) (pp. 246–250). IEEE.‏

  75. Knickerbocker, J., Budd, R., Dang, B., Chen, Q., Colgan, E., Hung, L. W., et al. (2018, May). Heterogeneous integration technology demonstrations for future healthcare, IoT, and AI computing solutions. In 2018 IEEE 68th electronic components and technology conference (ECTC) (pp. 1519–1528). IEEE.‏

  76. Sodhro, A. H., Pirbhulal, S., & de Albuquerque, V. H. C. (2019). Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Transactions on Industrial Informatics, 15(7), 4235–4243.

    Google Scholar 

  77. Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6(1), 54.

    Google Scholar 

  78. Ma, X., Wang, Z., Zhou, S., Wen, H., & Zhang, Y. (2018). Intelligent healthcare systems assisted by data analytics and mobile computing. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/3928080.

    Article  Google Scholar 

  79. Aldeer, M., Javanmard, M., & Martin, R. P. (2018). A review of medication adherence monitoring technologies. Applied System Innovation, 1(2), 14.

    Google Scholar 

  80. Shubair, R. M., Elayan, H. (2015). In vivo wireless body communications: State-of-the-art and future directions. In Proceedings of the Loughborough antennas & propagation conference (LAPC), Loughborough, UK, November 2–3, 2015 (pp. 1–5).

  81. Demir, A. F., Ankarali, Z. E., Abbasi, Q. H., Liu, Y., Qaraqe, K., Serpedin, E., et al. (2016). In vivo communications: Steps toward the next generation of implantable devices. IEEE Transactions on Vehicular Technology, 11, 32–42.

    Google Scholar 

  82. Kiourti, A., & Nikita, K. S. (2017). A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables. IEEE Transactions on Biomedical Engineering, 64, 1422–1430.

    Google Scholar 

  83. Chai, P. R., Rosen, R. K., & Boyer, E. W. (2016). Ingestible biosensors for real-time medical adherence monitoring: MyTMed. In Proceedings of the 2016 49th Hawaii international conference on system sciences (HICSS), Koloa, HI, USA, January 5–8, 2016 (pp. 3416–3423).

  84. Connor, J., Rafter, N., & Rodgers, A. (2004). Do fixed-dose combination pills or unit-of-use packaging improve adherence? A systematic review. Bulletin of the World Health Organization., 82, 935–939.

    Google Scholar 

  85. Hafezi, H., Robertson, T. L., Moon, G. D., Au-Yeung, K. Y., Zdeblick, M. J., & Savage, G. M. (2015). An ingestible sensor for measuring medication adherence. IEEE Transactions on Biomedical Engineering, 62, 99–109.

    Google Scholar 

  86. Dua, A., Weeks, W. A., Berstein, A., Azevedo, R. G., Li, R., Ward, A. (2017). An in-vivo communication system for monitoring medication adherence. In Proceedings of the wireless communications and networking conference (WCNC), San Francisco, CA, USA, March 19–22, 2017 (pp. 1–6).

  87. DiCarlo, L., Moon, G., Intondi, A., Duck, R., Frank, J., Hafazi, H., et al. (2012). A digital health solution for using and managing medications: Wirelessly observed therapy. IEEE Pulse, 3, 23–26.

    Google Scholar 

  88. Rghioui, A., & Oumnad, A. (2018). Challenges and opportunities of Internet of Things in healthcare. International Journal of Electrical and Computer Engineering, 8(5), 2753.

    Google Scholar 

  89. Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: Taxonomies and open challenges. Mobile Networks and Applications, 24(3), 796–809.

    Google Scholar 

  90. Rubí, S., Jesús, N., Gondim, L., & Paulo, R. (2019). IoMT platform for pervasive healthcare data aggregation, processing, and sharing based on OneM2M and OpenEHR. Sensors, 19(19), 4283.

    Google Scholar 

  91. Muzammal, M., Talat, R., Sodhro, A. H., & Pirbhulal, S. (2020). A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Information Fusion, 53, 155–164.

    Google Scholar 

  92. Ibrahim, A. K. M., Rashid, R. A., Hamid, A. H. F. A., Sarijari, M. A., & Baharudin, M. A. (2019). Lightweight IoT middleware for rapid application development. Telkomnika, 17(3), 1385–1392.

    Google Scholar 

  93. Sodhro, A. H., Luo, Z., Sodhro, G. H., Muzamal, M., Rodrigues, J. J., & de Albuquerque, V. H. C. (2019). Artificial Intelligence based QoS optimization for multimedia communication in IoV systems. Future Generation Computer Systems, 95, 667–680.

    Google Scholar 

  94. Sodhro, A. H., Malokani, A. S., Sodhro, G. H., Muzammal, M., & Zongwei, L. (2020). An adaptive QoS computation for medical data processing in intelligent healthcare applications. Neural Computing and Applications, 32(3), 723–734.

    Google Scholar 

  95. Sodhro, A. H., Obaidat, M. S., Abbasi, Q. H., Pace, P., Pirbhulal, S., Fortino, G., et al. (2019). Quality of service optimization in an IoT-driven intelligent transportation system. IEEE Wireless Communications, 26(6), 10–17.

    Google Scholar 

  96. Sodhro, A. H., Pirbhulal, S., Luo, Z., & de Albuquerque, V. H. C. (2019). Towards an optimal resource management for IoT based Green and sustainable smart cities. Journal of Cleaner Production, 220, 1167–1179.

    Google Scholar 

  97. Ventola, C. L. (2014). Social media and health care professionals: Benefits, risks, and best practices. Pharmacy and Therapeutics, 39(7), 491.

    Google Scholar 

  98. Pentescu, A., Cetină, I., & Orzan, G. (2015). Social media’s impact on healthcare services. Procedia Economics and Finance, 27, 646–651.

    Google Scholar 

  99. Ventola, C. L. (2014). Mobile devices and apps for health care professionals: Uses and benefits. Pharmacy and Therapeutics, 39(5), 356.

    Google Scholar 

  100. Al-Khafajiy, M., Kolivand, H., Baker, T., Tully, D., & Waraich, A. (2019). Smart hospital emergency system. Multimedia Tools and Applications, 78(14), 20087–20111.

    Google Scholar 

  101. Dingley, C., Daugherty, K., Derieg, M. K., & Persing, R. (2008). Improving patient safety through provider communication strategy enhancements. In K. Henriksen, J. B. Battles, M. A. Keyes, & M. L. Grady (Eds.), Advances in patient safety: New directions and alternative approaches (Vol. 3: Performance and tools). Rockville: Agency for Healthcare Research and Quality (US).

    Google Scholar 

  102. Yogaraj, A., Ezilarasan, M. R., Anuroop, R. V., Sivanthiram, C. S., & Thakur, S. K. (2017). IOT based smart healthcare monitoring system for rural/isolated areas. International Journal of Pure and Applied Mathematics, 114(12), 679–688.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadhim Takleef Kadhim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, K.T., Alsahlany, A.M., Wadi, S.M. et al. An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT). Wireless Pers Commun 114, 2235–2262 (2020). https://doi.org/10.1007/s11277-020-07474-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07474-0

Keywords

Navigation