Skip to main content
Log in

Blind Signal Modulation Recognition through Density Spread of Constellation Signature

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Automatic recognition of modulation scheme in blind environment plays a key role in many communication applications. A hierarchical and local density (HLD) approach is proposed to classify eight modulation schemes in a two stage process. In the first stage, the domain of modulation schemes (FSK, ASK, PSK, and QAM) is identified. FSK is identified based on feature extracted through complex envelope of downconverted signal. ASK scheme is identified using linear regression error. PSK and QAM modulation schemes are recognized based on the ratio of sixth and fourth order cumulant. In the latter stage, the order of modulation (ASK, PSK, and QAM) is classified through its respective ideal constellation points. HLD can correctly identify 2ASK, 4ASK, and QPSK modulation schemes in AWGN channel above 8 dB SNR and the other modulation schemes (8ASK, 8PSK, 16QAM, and 64QAM) above 16dB SNR. HLD is implemented in NI labVIEW and validated on the signals generated through PXIe-5673 and received using NI PXIe-5661. The proposed HLD classifier does not require any training to set thresholds as compared to more complex SVM, KNN, and Naive Bayes Classifier based techniques and shows an improved accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdelmutalab, A., Assaleh, K., & El-Tarhuni, M. (2016). Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Physical Communication, 21, 10–18. https://doi.org/10.1016/j.phycom.2016.08.001.

    Article  Google Scholar 

  2. Ali, A., Yangyu, F., & Liu, S. (2017). Automatic modulation classification of digital modulation signals with stacked autoencoders. Digital Signal Processing, 71, 108–116. https://doi.org/10.1016/j.dsp.2017.09.005.

    Article  MathSciNet  Google Scholar 

  3. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750. https://doi.org/10.1109/TWC.2012.060412.110460.

    Article  Google Scholar 

  4. Chen, W., Xie, Z., Ma, L., Liu, J., & Liang, X. (2019). A faster maximum-likelihood modulation classification in flat fading non-Gaussian channels. IEEE Communications Letters, 23(3), 454–457.

    Article  Google Scholar 

  5. Dobre, O.A., Bar-Ness, Y., & Su, W.: Higher-order cyclic cumulants for high order modulation classification. In Military communications conference, 2003. MILCOM’03. 2003 IEEE (Vol. 1, pp. 112–117). IEEE (2003). https://doi.org/10.1109/MILCOM.2003.1290087

  6. Ebrahimzadeh, A., & Ghazalian, R. (2011). Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Engineering Applications of Artificial Intelligence, 24(1), 50–59. https://doi.org/10.1016/j.engappai.2010.08.008.

    Article  Google Scholar 

  7. Ebrahimzadeh, A., & Mousavi, S. (2011). Classification of communications signals using an advanced technique. Applied Soft Computing, 11(1), 428–435. https://doi.org/10.1016/j.asoc.2009.12.001.

    Article  Google Scholar 

  8. Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892. https://doi.org/10.1109/TWC.2009.12.080883.

    Article  Google Scholar 

  9. Haykin, S. (2008). Communication systems. Hoboken: Wiley.

    Google Scholar 

  10. Hong, L., & Ho, K. (1999) . Identification of digital modulation types using the wavelet transform. In Military communications conference proceedings, 1999. MILCOM 1999. IEEE (Vol. 1, pp. 427–431). IEEE (1999). https://doi.org/10.1109/MILCOM.1999.822719

  11. Jajoo, G., Kumar, Y., Kumar, A., & Yadav, S. K. (2020). Implementation of modulation classifier over software defined radio. IET Communications, 14, 1467–1475. https://doi.org/10.1049/iet-com.2019.0922.

    Article  Google Scholar 

  12. Jajoo, G., Kumar, Y., & Yadav, S. K. (2019). Blind signal PSK/QAM recognition using clustering analysis of constellation signature in flat fading channel. IEEE Communications Letters, 23(10), 1853–1856.

    Article  Google Scholar 

  13. Jajoo, G., Kumar, Y., Yadav, S. K., Adhikari, B., & Kumar, A. (2017). Blind signal modulation recognition through clustering analysis of constellation signature. Expert Systems with Applications, 90, 13–22. https://doi.org/10.1016/j.eswa.2017.07.053.

    Article  Google Scholar 

  14. Jajoo, G., Yadav, Y. K., & Yadav, S. (2018). Blind signal digital modulation classification through k-medoids clustering. In 2018 IEEE international conference on advanced networks and telecommunications systems (ANTS), Indore, India (pp. 1–5). https://doi.org/10.1109/ANTS.2018.8710107.

  15. Keshk, M. E. H. M., El-Naby, M. A., Al-Makhlasawy, R. M., El-Khobby, H. A., Hamouda, W., Elnaby, M. M. A., et al. (2015). Automatic modulation recognition in wireless multi-carrier wireless systems with cepstral features. Wireless Personal Communications, 81(3), 1243–1288.

    Article  Google Scholar 

  16. Kumar, Y., Sheoran, M., Jajoo, G., & Yadav, S. K. (2020). Automatic modulation classification based on constellation density using deep learning. IEEE Communications Letters, 24(6), 1275–1278. https://doi.org/10.1109/LCOMM.2020.2980840.

    Article  Google Scholar 

  17. Mirarab, M., Sobhani, M. (2007). Robust modulation classification for PSK/QAM/ASK using higher-order cumulants. In 2007 6th International conference on information, communications and signal processing (pp. 1–4). IEEE. https://doi.org/10.1109/ICICS.2007.4449591

  18. Mobasseri, B. G. (2000). Digital modulation classification using constellation shape. Signal Processing, 80(2), 251–277. https://doi.org/10.1016/S0165-1684(99)00127-9.

    Article  MATH  Google Scholar 

  19. Orlic, V. D., & Dukic, M. L. (2012). Automatic modulation classification: Sixth-order cumulant features as a solution for real-world challenges. In Telecommunications forum (TELFOR), 2012 20th (pp. 392–399). IEEE. https://doi.org/10.1109/TELFOR.2012.6419230

  20. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In MILCOM 2000. 21st Century military communications conference proceedings (Vol. 2, pp. 670–674). https://doi.org/10.1109/MILCOM.2000.904013

  21. Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., et al. (2019). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727.

    Article  Google Scholar 

  22. Phukan, G. J., & Bora, P. K. (2014). An algorithm for blind symbol rate estimation using second order cyclostationarity. In 2014 International conference on signal processing and communications (SPCOM) (pp. 1–6). IEEE. https://doi.org/10.1109/SPCOM.2014.6983923

  23. Satija, U., Manikandan, M., & Ramkumar, B. (2014) . Performance study of cyclostationary based digital modulation classification schemes. In 2014 9th International conference on industrial and information systems (ICIIS) (pp. 1–5). IEEE. https://doi.org/10.1109/ICIINFS.2014.7036609

  24. Sethi, A., & Ray, B. (2013) . Blind carrier/timing recovery and detection of modulation scheme. US Patent 8605830

  25. Wong, M. D., & Nandi, A. K. (2001). Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons. In Sixth international, symposium on signal processing and its applications, 2001 (Vol. 2, pp. 390–393). IEEE. https://doi.org/10.1109/ISSPA.2001.950162

  26. Wong, M. D., Ting, S. K., & Nandi, A. K. (2008). Naive Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In 2nd International conference on signal processing and communication systems, 2008. ICSPCS 2008 (pp. 1–5). IEEE. https://doi.org/10.1109/ICSPCS.2008.4813755

  27. Wu, H. C., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7(8), 3098–3105. https://doi.org/10.1109/TWC.2008.070015.

    Article  Google Scholar 

  28. Yadav, Y. K., Jajoo, G., & Yadav, S. K. (2017). Modulation scheme detection of blind signal using constellation graphical representation. In: 2017 International conference on computer, communications and electronics (Comptelix) (pp. 231–235). IEEE. https://doi.org/10.1109/COMPTELIX.2017.8003970

Download references

Acknowledgements

This project is funded by Defense Research and Development Organization under Grant number S/DRDO/SKY/20150004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Jajoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jajoo, G., Kumar, Y., Kumar, A. et al. Blind Signal Modulation Recognition through Density Spread of Constellation Signature. Wireless Pers Commun 114, 3137–3156 (2020). https://doi.org/10.1007/s11277-020-07521-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07521-w

Keywords

Navigation